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Abstract——Melatonin, the major hormone pro-
duced by the pineal gland, displays characteristic
daily and seasonal patterns of secretion. These ro-
bust and predictable rhythms in circulating melato-
nin are strong synchronizers for the expression of

numerous physiological processes in photoperiodic
species. In mammals, the nighttime production of
melatonin is mainly driven by the circadian clock,
situated in the suprachiasmatic nucleus of the hypo-
thalamus, which controls the release of norepineph-
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rine from the dense pineal sympathetic afferents.
The pivotal role of norepinephrine in the nocturnal
stimulation of melatonin synthesis has been exten-
sively dissected at the cellular and molecular levels.
Besides the noradrenergic input, the presence of
numerous other transmitters originating from vari-
ous sources has been reported in the pineal gland.
Many of these are neuropeptides and appear to con-
tribute to the regulation of melatonin synthesis by
modulating the effects of norepinephrine on pineal
biochemistry. The aim of this review is firstly to
update our knowledge of the cellular and molecular

events underlying the noradrenergic control of mel-
atonin synthesis; and secondly to gather together
early and recent data on the effects of the nonadren-
ergic transmitters on modulation of melatonin syn-
thesis. This information reveals the variety of inputs
that can be integrated by the pineal gland; what
elements are crucial to deliver the very precise tim-
ing information to the organism. This also clarifies
the role of these various inputs in the seasonal vari-
ation of melatonin synthesis and their subsequent
physiological function.

I. Introduction

The pineal gland (or epiphysis) was probably de-
scribed for the first time by Herophile, in the third
century. He attributed to it the role of a sphincter
regulating the flow of thought in the ventricular sys-
tem of the brain. Some 450 years later, Galen ob-
served that the pineal structure appeared different to
that of nervous tissue but very similar to that of the
other glands. It was described more precisely during
the Renaissance through the documents of da Carpi,
Vesalius, and Vesal. During this period, the prevailing
concept was that ventricles contained the animal spir-
its. Nevertheless, these authors admitted that the
pineal gland could not control these flows between
ventricles III and IV. Vesal later considered the gland
as the center of a fine vascular system, which in turn
must have influenced Descartes.

The pineal gland was studied intensively by Descartes
during the 17th century. He described the pineal gland
as the third eye, not by analogy to its role in the control
of the photoperiod, which he had no knowledge of, but
because it is, in the Cartesian dualist vision, the place in
the body where the soul exerts its control (the seat of
imagination and common sense), and not the seat of the
soul as it has often been referred to. “The reasonable
soul,” according to Descartes, “is lodged in the body, but
not only as a pilot on its ship, it is necessary that it is
united with its body.” Descartes was the first to propose
a “physiological” explanation for the functioning of the
central nervous system, including the pineal gland, for
the perception of the environment. Even if this Carte-
sian model appears a posteriori an unreliable model,
this concept nevertheless prevailed for the next 250
years.

At the end of the 19th century Ahlborn and Rabl-
Ruckhardt, then Graaf, Korschelt, and Spencer, de-
scribed the anatomy, histology, innervation, and embry-
ology of the mammalian pineal gland and noticed its
resemblance to the epiphysis organ of lower vertebrates.
In 1905, Studnicka established that phylogenetically the
pineal gland derived from a photoreceptor organ, but its
function remained unknown.

At the beginning of the 20th century the physiolog-
ical role of the pineal gland was studied. Heubner
presented the case of three girls with pineal tumors
and precocious puberty. He concluded that the de-
struction of the pineal by the tumor had prevented the
normal production of an antigonadotropic pineal hor-
mone and raised the hypothesis that the pineal may
control the onset of puberty. The link between the
pineal gland and reproduction was thus established.
In 1943, Bargman suggested that the endocrine func-
tion of the pineal gland was regulated by light, via the
central nervous system.

From the 1970s, the number of publications on the
pineal gland markedly increased. The first international
congress that brought “pinealogists” together was held
in 1965 in Amsterdam. Research on the pineal gland
developed in four main directions.

1. Structure and ultrastructure: The pineal gland
was described in numerous vertebrate species. In
most mammals, it forms a solid mass located
between the habenular and posterior commis-
sures, but in rodents the pineal gland migrates
dorso-caudally during ontogenesis, leading to a
characteristic three-part gland (deep, stalk, and
superficial gland; see Fig. 1 in the rat). Electron
microscopy has allowed the fine description of
pineal cells and their different phenotypes, as
well as the ontogenesis and phylogenesis of the
gland.

2. Innervation of the gland: The first description of
nervous fibers in the pineal gland was made by
Studnicka in the beginning of this century. The
sympathetic innervation was described by Cajal in
1911 in the mouse. Since then, a complex innerva-
tion of the mammalian pineal gland has been de-
scribed arising from various central and peripheral
neural structures.

3. Histochemistry and biochemistry of the gland: Since
the work of McCord and Allen, in 1917, it was as-
sumed that a substance contained in the pineal gland
was responsible for the bleaching of amphibian skin.
In 1958, Lerner et al. identified this substance as
N-acetyl-5-methoxytryptamine and named it melato-
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nin (MEL1) by analogy to its effect on amphibian
skin. The different enzymes involved in MEL synthe-
sis were then identified. Their regulation by various
pineal transmitters is still under investigation. Other
indolic and nonindolic substances have also been
identified in the pineal gland.

4. Endocrine function of the gland: In 1954, Kitay and
Altschule demonstrated that the pineal gland in-
fluences reproductive function. Discovery of the

link between the light/dark (L/D) cycle and the
metabolism of the pineal gland was a milestone in
the history of understanding the endocrine func-
tion of the pineal gland. Today, the target tissues
and the mechanisms of action of MEL on the repro-
ductive axis are still not totally understood. In ad-
dition, recent investigations have revealed that
MEL displays widespread effects in the organism,
for example on the hypothalamic circadian clock,
the immune system, or in the retina. In addition,
MEL’s antioxidant properties and its ability to
modulate neurotransmission show less specific and
ubiquitous effects.

The objective of this review is to consolidate and up-
date our current knowledge of the complex and varied
inputs controlling the rhythmic synthesis of MEL in the
mammalian pineal gland.

II. Role of Melatonin

MEL is secreted by the pineal gland with daily and
seasonal rhythms mainly under the control of the circa-
dian oscillator located in the suprachiasmatic nuclei of
the hypothalamus (SCN). This hormone, which is re-
leased at night with duration inversely proportional to
the duration of the photoperiod, participates in the
transmission of the circadian and seasonal message to
the organism (see Reiter, 1993; Goldman, 1999 for re-
views). For many years, but especially during the last
decade, many studies have been performed to under-
stand the physiological role, sites, and mechanisms of
action of MEL.

A. Regulation of Seasonal Rhythms

The pineal gland is a major component of the endo-
crine system that allows mammals to respond to the
annual changes in photoperiod by adaptive alterations
of their physiological state. The best example of such
photoperiod-dependent physiological functions is the ac-
tivation/inactivation of the reproductive axis, a phenom-
enon in which the pineal and its MEL rhythm are es-
sential. Numerous studies have now demonstrated that
the pineal gland is a neuroendocrine transducer receiv-
ing photoperiodic information from the retina and circa-
dian SCN oscillator, and transmitting this to the repro-
ductive system via a particular dynamic pattern of MEL
secretion (see Hoffmann, 1979; Reiter, 1980; Goldman
and Darrow, 1983; Bittman, 1984; Tamarkin et al.,
1985; Pévet, 1988; Goldman, 2001 for reviews). How-
ever, several fundamental questions remain before the
role of MEL in the regulation of seasonal function is
elucidated: 1) where is the photoperiodic information
encoded before its translation into the MEL rhythm? 2)
Where and how is the MEL rhythm decoded to regulate
specific seasonal functions? 3) Which parameters of the
MEL rhythm (phase, duration, amplitude, or total quan-

1Abbreviations: MEL, melatonin; L/D, light/dark; SCN, suprachi-
asmatic nucleus of the hypothalamus; VP, vasopressin; IR, immuno-
reactive; IGL, thalamic intergeniculate leaflet; PT, pars tuberalis of
the adenohypophysis; MEL-R, melatonin receptor; SP, short photo-
period; LP, long photoperiod; DA, dopamine; 5-HT, 5-hydroxytrypta-
mine (serotonin); NE, norepinephrine; ACh, acetylcholine; NK, neu-
rokinin/tachykinin family; MT1, melatonin receptor of subtype 1;
MT2, melatonin receptor of subtype 2; AC, adenylate cyclase; DAG,
diacylglycerol; IP3, inositol triphosphate; PKC, protein kinase C;
CRE, cAMP response element; CREB, CRE-binding protein; RHT,
retino-hypothalamic tract; PACAP, pituitary adenylate cyclase acti-
vating peptide; sP, substance P; NPY, neuropeptide Y; Enk, en-
kephalin; VIP, vasoactive intestinal peptide; GRP, gastrin-releasing
peptide; SOM, somatostatin; PVN, hypothalamic paraventricular
nucleus; OT, oxytocin; IML, intermediolateral column of the spinal
cord; SCG, superior cervical ganglion; PHI, histidine isoleucine pep-
tide; CGRP, calcitonin gene-related peptide; TH, tyrosine hydroxy-
lase; SCGx, superior cervical ganglionectomy; HRP, horseradish per-
oxidase; HCRT, hypocretin; LHRH, luteinizing hormone-releasing
hormone; DSIP, delta-sleep inducing peptide; ISH, in situ hybridiza-
tion; RT-PCR, reverse transcription-polymerase chain reaction;
CNP, C-type natriuretic peptide; SN, secretoneurin; �MSH, mela-
nin-stimulating hormone of type �; 5-HTP, 5-hydroxytryptophan;
TPOH, tryptophan hydroxylase (EC 1.14.16.4); AAAD, aromatic
amino acid decarboxylase (EC 4.1.1.28); HIOMT, hydroxyindole-O-
methyltransferase (EC 2.1.1.4); MAO, monoamine oxidase (EC
1.4.3.4); 5-HIAL, 5-hydroxyindole acetaldehyde; 5-HIAA, 5-hydroxy-
indole acetic acid; 5-MIAA, 5-methoxyindole acetic acid; 5-HL, 5-hy-
droxytryptophol; 5-ML, 5-methoxytryptophol; AA-NAT, arylalky-
lamine-N-acetyltransferase (EC 2.3.1.37); NAS, N-acetylserotonin;
GC, guanylate cyclase; PKA, cAMP-dependent protein kinase; CaM,
calmodulin; PKCa2�/CaM, Ca2�/calmodulin-dependent protein ki-
nase; p-CPA, para-chlorophenylalanine; NAT, arylamine-N-acetyl-
transferase (EC 2.3.1.5.); CATBP, CCAAT box-specific binding pro-
teins; P-CREB, phosphorylated form of CREB; nat-CRE, CRE-like
sequence specific of the Aa-nat gene promoter; PIRE, pineal regula-
tory element; CRX, cone-rod homeobox; AP-1, activating protein 1;
D/D, constant dark; L/L, constant light; �1-AR, adrenergic receptor of
subtype �1; ISO, isoproterenol; PROP, propranolol; �1-AR, adrener-
gic receptor of subtype �1; �2-AR, adrenergic receptor of subtype �2;
PLC, phospholipase C; NO, nitric oxide; NOS, NO synthase; Ca2�

i,
intracellular calcium; MAPK, mitogen-activated protein kinase;
IEG, immediate early gene; CREM, CRE modulator; ICER, inducible
cAMP early repressor; AR, adrenergic receptor; VPAC2-R, type 2
VIP/PACAP receptor; VPAC1-R, type 1 VIP/PACAP receptor;
PAC1-R, PACAP specific receptor; PP, pancreatic peptide; Yn-R, NPY
receptor of subtype n (n � 1–5); Y6-R, NPY receptor of subtype 6.
OT-R, oxytocin receptor; SST1, group 1 SOM receptors (sst2, sst3,
sst5); SST2, group 2 SOM receptors (sst1 and sst5); NKA, neurokinin
A; NKB, neurokinin B; CT, calcitonin; HCRT-1, 33-amino acid form
of hypocretin; HCRT-2, 28-amino acid form of hypocretin; ANP,
A-type natriuretic peptide; BNP, B-type natriuretic peptide; CNP,
C-type natriuretic peptide; GC-A, ANP and BNP receptor; GC-B,
CNP receptor; Ang II, angiotensin II; mACh-R, muscarinic cholin-
ergic receptor; nACh-R, nicotinic cholinergic receptor; MV, mi-
crovesicle; CT, circadian time; ZT, Zeitgeber time; BIBP3226, (R)-
N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]-D-argininamide.
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tity) are interpreted as the photoperiodic message by the
target structures?

Recently, data have accumulated that strongly sug-
gest that the hypothalamic circadian clock may be the
site for the integration of annual changes in photoperiod
(see Goldman, 2001; Schwartz et al., 2001 for reviews):
namely, a circadian reading of the photoperiod appears
necessary (Maywood et al., 1990); FOS reactivity in the
SCN following a light stimulus depends on the photope-
riod history (Sumova et al., 1995; Vuillez et al., 1996);
clock gene expression in the SCN displays MEL-inde-
pendent photoperiodic variations (Messager et al.,
1999b, 2000, 2001; Nuesslein-Hildesheim et al., 2000);
and the daily profile of vasopressin (VP) mRNA differs in
long and short photoperiods (Jac et al., 2000). In addi-
tion, the thalamic intergeniculate leaflet (IGL), a relay
between the retina and SCN, may be involved in photo-
period integration (Menet et al., 2001).

Several neural structures have been identified as tar-
gets for MEL’s effect on seasonal function. The pars
tuberalis of the adenohypophysis (PT), containing the
highest density in MEL receptors (MEL-R), is the site of
action for MEL regulation of prolactin secretion (see
Lincoln, 1994; Malpaux et al., 1995, 2001; Hazlerigg et
al., 2001 for reviews) and displays MEL-dependent daily
and photoperiodic variations in clock gene expression
with lower amplitude under a short photoperiod (SP)
(Messager et al., 1999b, 2000, 2001; von Gall et al.,
2002a). Identification of the specific molecule released
from the PT in response to MEL, which acts on the
lactotrophs, named tuberalin, remains unknown, al-
though two 21- and 72-kDa proteins were recently iden-
tified in the bovine PT (Guerra and Rodriguez, 2001).
Depending on the species, various hypothalamic sites
(SCN in Siberian hamster; mediobasal hypothalamus in

Syrian hamster, premammillary hypothalamus in
sheep) are MEL targets for the specific control of repro-
ductive function (Badura and Goldman, 1992; Maywood
and Hastings, 1995; Malpaux et al., 1998). Although it
has been clearly shown that MEL is the photoperiodic
endocrine message for each structure, it has not yet been
elucidated how this MEL message is decoded at the
cellular level. Several studies have reported that, al-
though MEL is an acute inhibitor of cAMP accumula-
tion, tissues pre-exposed to long-duration (up to 16 h)
MEL treatment become hypersensitive to cAMP (Ha-
zlerigg et al., 1993; Witt-Enderby et al., 1998; Messager
et al., 1999a; Pelisek and Vanecek, 2000) or cAMP ele-
vating agents like adenosine (von Gall et al., 2002a) even
with a lower number of MEL-R.

To define which parameters of the MEL secretion
pattern (phase, duration, amplitude, or total quantity)
are interpreted as a photoperiodic message by the target
structures, several hypotheses have been proposed from
analysis of the endogenous MEL patterns in different
conditions and from studies with acute injections or
chronic infusions of exogenous MEL (Fig. 2). Observa-
tions of the MEL secretion pattern in various species
raised in different photoperiodic conditions have shown
that the duration of the nocturnal MEL peak is posi-
tively related to the length of the night (sheep: Rollag
and Niswender, 1976; Karsch et al., 1988; rat: Illnerova
and Vanecek, 1980; Siberian hamster: Illnerova et al.,
1984; Ribelayga et al., 2000; Syrian hamster: Skene et
al., 1987; Maywood et al., 1993; Miguez et al., 1995a;
European hamster: Vivien-Roels et al., 1992). Further-
more, experiments using acute injections or constant
infusion of MEL have shown that the duration of a high
circulating MEL level is the limiting factor to obtain a
photoperiodic response (see Carter and Goldman, 1983;

FIG. 1. Autoradiogram of a parasagittal section of rat brain hybridized with Hiomt antisense cRNA. Hiomt mRNA is expressed in the three parts
of the pineal complex: SP, superficial pineal; PS, pineal stalk; DP, deep pineal; original magnification, 6� (from Ribelayga et al., 1998, with
permission).
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Pitrosky et al., 1991; Bartness et al., 1993 for reviews).
Consequently, the duration of the nocturnal MEL peak
is an important factor for the transmission of photope-
riodic information from the environment to the body.
The early experiments showed that an acute injection of
MEL at the end of the day or beginning of the night to
intact hamsters kept in long photoperiod (LP) induced
gonadal regression, while a similar injection made at the
end of the night or at the beginning of the day had no
effect. This observation led to the hypothesis that the
coincidence of the injection of MEL with a phase of
sensitivity was a deciding factor for the appearance of a
physiological effect (see Tamarkin et al., 1976; Reiter,
1987 for review). Recently, a study performed in our
laboratory (Pitrosky et al., 1995) has shown that the
photoperiodic response to MEL in the Syrian hamster
depends on a phenomenon of coincidence. The infusion
of two consecutive MEL peaks, whose length from the
beginning of the first peak to the end of the second
peak corresponded to an SP signal but whose total
quantity of infused MEL corresponded to an LP sig-
nal, induced an SP-type response of the reproductive
axis. The physiological response thus depends on the
interval between the first and the second MEL peak
but not at the clock time when the double MEL peak is
applied.

In addition, the amplitude of the nocturnal peak of
MEL could also be an important parameter in photope-
riodic transmission (see Vivien-Roels, 1999 for review).
Several examples of photoperiodic variation in the am-
plitude of the MEL peak have been observed, for exam-
ple, in the pig (McConnell and Ellendorf, 1987; Taste et
al., 2001), mule (Cozzi et al., 1991), Siberian hamster
(Lerchl and Schlatt, 1992; Steinlechner et al., 1995;
Miguez et al., 1996; Ribelayga et al., 2000), European
hamster (Vivien-Roels et al., 1992, 1997), and horse
(Guérin et al., 1995). Annual variations in the amplitude
of the nocturnal MEL peak are especially visible when
animals are maintained in their natural environment.
These observations suggest that factors other than the
photoperiod that display annual variations (e.g., tem-
perature, quality/quantity of food, humidity) may be in-
tegrated by the organism and transmitted via the secre-
tion of MEL (Pévet, 1987; Pévet et al., 1991; Vivien-
Roels, 1999). These other nonphotic environmental
factors could modulate the perception of the photoperiod
by altering the metabolism of the pineal gland. Environ-
mental temperature seems an important factor since
diminution of the temperature accelerates gonadal re-
gression in Siberian and Syrian hamsters placed in SP
(Heldmaier and Steinlechner, 1981; Pévet et al., 1986;
Larkin et al., 2002). In addition, a decrease in tempera-
ture 1) increases enzyme activity in the rat pineal gland
(Nir et al., 1975); 2) increases the amplitude of the
nocturnal pineal MEL peak in the Syrian hamster (Brai-
nard et al., 1982, but discussed by Pévet et al., 1989a)
and European hamster (Vivien-Roels et al., 1997); and 3)

T
A

B
L

E
1

C
h

ar
ac

te
ri

st
ic

s
of

th
e

va
ri

ou
s

pe
pt

id
es

pr
es

en
t

in
th

e
ro

d
en

t
pi

n
ea

l
gl

an
d

P
ep

ti
de

a.
a.

O
ri

gi
n

C
on

te
n

t
E

ff
ec

t
on

m
el

at
on

in
sy

n
th

es
is

pa
th

w
ay

R
ec

ep
to

r
E

C
5

0

V
ar

ia
ti

on
s

N
eu

ra
l

E
n

do
cr

in
e

In
tr

ap
in

ea
l

cA
M

P
cG

M
P

C
a2

�
T

P
O

H
A

A
-N

A
T

H
IO

M
T

M
E

L
5-

H
T

N
E

D
ai

ly
S

ea
so

n
al

V
IP

28
�

17
pm

ol
/g

�
�

0/
�

�
�

�
�

�
V

P
A

C
1

0.
1

n
M

Y
es

P
A

C
A

P
27

/3
8

�
20

pm
ol

/g
�

0
0/

�
�

�
�

�
�

V
P

A
C

1
;

P
A

C
1

0.
1

n
M

Y
es

/n
o

N
P

Y
36

�
�

a
,b

43
0–

78
5

pm
ol

/g
�

�
0/

�
/�

/x
�

�
Y

1
(p

os
t)

;
Y

2
(p

re
)

5/
50

n
M

Y
es

Y
es

g

V
P

9
�

�
�

c
20

fm
ol

/g
la

n
d

x
0/

�
x

x
V

1
a

7
n

M
Y

es
Y

es
O

T
9

�
�

�
d

14
fm

ol
/g

la
n

d
x

x
Y

es
Y

es
S

O
M

14
/2

8
�

�
1–

3
n

g/
m

g
pr

ot
0

0
0

S
S

T
2

Y
es

Y
es

S
P

11
�

0
0

0
N

K
1

C
G

R
P

37
�

S
N

33
�

�
e

34
fm

ol
/g

la
n

d
�

�
�

N
o

H
C

R
T

1/
2

28
/3

3
�

�
O

re
xi

n
-2

D
S

IP
9

�
0

�
�

�
C

N
P

�
�

f
�

0
O

pi
oi

ds
�

�
�

-M
S

H
13

�
�

18
0

pg
/g

la
n

d
�

Y
es

L
H

R
H

�
�

�
�

Y
es

E
ff

ec
ts

:
�

,
st

im
u

la
ti

n
g;

�
,

in
h

ib
it

in
g;

0,
n

o
ef

fe
ct

;
x,

po
te

n
ti

at
in

g
ef

fe
ct

.
a

B
at

.
b

S
yr

ia
n

h
am

st
er

.
c

A
R

N
m

bu
t

n
o

pe
pt

id
e.

d
C

ow
.

e
S

yr
ia

n
h

am
st

er
.

f
C

ow
.

g
E

u
ro

pe
an

h
am

st
er

.
N

on
sp

ec
if

ie
d:

ra
t.

330 SIMONNEAUX AND RIBELAYGA

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


modulates the inhibitory effect of light applied at night
(Stieglitz et al., 1991). Currently, anatomical structures
and transmitters involved in these effects of tempera-
ture are not known and could act directly on the pineal
gland or on intermediate structures sensitive to the tem-
perature.

Historically considered as a pro or antigonadotropic
hormone, according to species, it is clearly established
now that MEL is a pivotal endocrine messenger used to
time several annual functions with the seasonal cycle to
ensure adaptation and survival of individual in their
cyclic environment.

B. Regulation of Circadian Rhythms

In all mammals studied to date, whether they exhibit
nocturnal or diurnal activity, MEL is synthesized in the
pineal gland during the dark phase of the light/dark
cycle and is rapidly delivered to the body via the blood-

stream. Pinealectomy does not alter the animal’s circa-
dian rhythm in rest-activity but facilitates the re-syn-
chronization of the animal to a new photoperiod (Cheung
and McCormack, 1982). The daily rhythm of MEL is
considered to be a circadian mediator used by the endog-
enous SCN clock to deliver the circadian message to
MEL target structures (containing MEL-R). In addition,
MEL exerts a “chronobiotic” effect by acting directly on
the SCN, which contain MEL-R (Vanecek et al., 1987), to
affect the circadian clock (see Pévet et al., 2002 for
review).

In rats and hamsters with free-running circadian
rhythms, pharmacological doses of exogenous MEL are
capable of synchronizing the circadian rhythms of loco-
motor activity and MEL synthesis (see Redman et al.,
1983; Armstrong and Chessworth, 1987; Humlova and
Illnerova, 1990; Kirsch et al., 1993; Drijfhout et al.,
1996b; Grosse and Davis, 1998; Pitrosky et al., 1999;

FIG. 2. Schematic representation of the different theoretical models explaining how the photoperiodic MEL endocrine message is decoded. In
response to a change in the photoperiod, the daily MEL profile displays substantial changes, primarily affecting the duration and/or the amplitude
of the nocturnal peak. Distortion of the MEL message, in turn, has an impact on many physiological functions. How the organism “reads” the
modifications of the MEL profile is still largely hypothetical and appears species-dependent. The duration of the nocturnal peak seems to be an
important parameter in many photoperiodic species. Photoperiodic dependent changes may rely on the absolute duration of the nocturnal MEL peak
(A) or on the presence of a time-window of sensitivity to MEL (B). In addition, in some species, the amplitude of the nocturnal MEL peak may be an
important parameter (C). a, amplitude of the nocturnal MEL peak; d, duration of the nocturnal peak of MEL; LP, long photoperiod; SP, short
photoperiod.
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Schuhler et al., 2002; Pévet et al., 2002 for review). The
synchronizing effect of MEL occurs at a particular cir-
cadian time, being different according to species (e.g.,
beginning of the active period, CT 12, in the rat). Re-
cently, it was reported that exogenous MEL, applied
directly into the SCN by reverse microdialysis, not only
phase-advances the endogenous MEL peak but also in-
creases the amplitude of the MEL peak (Bothorel et al.,
2002). Additionally, various in vitro studies have dem-
onstrated a local effect of MEL on SCN metabolism,
electrical activity, and circadian rhythmicity (Cassone et
al., 1988; Stehle et al., 1989; Mc Arthur et al., 1991). At
the moment, it is not known why high doses of exoge-
nous MEL are necessary to induce a phase-shifting ef-
fect. MEL may exert its synchronizing properties indi-
rectly on clock inputs or clock outputs, or directly on the
clock via MEL-R (MEL-R were identified on VP-contain-
ing SCN neurons; Song et al., 1999) or other binding
sites (see Pévet et al., 2002 for review). This property of
MEL is used, along with several circadian signals, be-
tween the mother and fetus to entrain the circadian
clock of the offspring (Reppert et al., 1979; Reppert and
Weaver, 1991).

In humans, this “chronobiotic” property of MEL has
been used to help re-synchronize individuals showing
disrupted circadian rhythms, for example, related to
“delayed sleep phase” syndrome, jet-lag, night shift
work, or in some blind people (Arendt et al., 1984, 1987,
1988, 1997; Lewy et al., 1992; Claustrat et al., 1995;
Skene et al., 1996; Lockley et al., 2000; Takahashi et al.,
2000).

C. Other Roles of Melatonin

1. Autocrine/Paracrine Effects. In addition to the
pineal gland, MEL is synthesized in several other struc-
tures (retina, Harderian gland, gut) where the genetic
expression and biochemical activity of the MEL-synthe-
sizing enzymes have been detected (Quay, 1965; Cardi-
nali and Wurtman, 1972; Quay and Ma, 1976; Brammer
et al., 1978; Pévet et al., 1980a; Vivien-Roels et al., 1981;
Gauer and Craft, 1996; Roseboom et al., 1996; Ribelayga
et al., 1998a; Djéridane et al., 1998, 2000). Since follow-
ing pinealectomy the plasma MEL concentration is very
low and since some of these structures contain MEL-R
(Dubocovich and Takahashi, 1987; Lopez-Gonzalez et
al., 1991), it has been proposed that MEL plays an
auto/paracrine role in these structures.

In the retina, MEL is rhythmically synthesized in the
photoreceptors in a circadian manner (see Cahill and
Besharse, 1995 for review), which persists in vitro in
constant conditions (Tosini and Menaker, 1996, 1998).
MEL alters various aspects of retinal metabolism (see
Iuvone, 1996 for review). Most of the retinal effects of
MEL are indirect, and probably consist primarily in the
inhibition of dopamine (DA) release from amacrine cells
(Dubocovich, 1983). Conversely, DA acutely inhibits
MEL synthesis in the retina and affects the phase of the

MEL rhythm (Iuvone et al., 1987; Nguyen-Legros et al.,
1996; Jaliffa et al., 2000; Tosini and Dirden, 2000).

The rodent Harderian gland also synthesizes MEL
but the mechanisms regulating the synthesis and local
effects of the hormone are still not well understood
(Djéridane et al., 1998, 2000).

In the pineal gland several observations also suggest
that MEL exhibits autocrine/paracrine effects. For ex-
ample, in neonate but not adult rats, the pineal gland
displays MEL-R binding (Zitouni et al., 1995). Exoge-
nous MEL modifies various morphological and biochem-
ical pineal parameters, namely proteic microtubules
(Freire and Cardinali, 1975), enzymatic activities
(Freire and Cardinali, 1975), presynaptic release of neu-
rotransmitters (Chuluyan et al., 1991), and pre and
postsynaptic release of the MEL precursor serotonin
(5-HT; Miguez et al., 1995b).

2. Modulation of Neurotransmission It has been pro-
posed that MEL could, on one hand, alter the release of
several neurotransmitters, especially DA, 5-HT, norepi-
nephrine (NE), acetylcholine (ACh) and, on the other
hand, could modulate the postsynaptic response (Cardi-
nali et al., 1975; Carneiro et al., 1994; Markus et al.,
1996; Bucher et al., 1999). For example, MEL potenti-
ates the NE-induced vasoconstriction of the rat caudal
artery (Bucher et al., 1999). In addition, MEL, through
activation of its different receptor subtypes, can differ-
entially modulate the function of type A �-aminobutyric
acid (GABAA) receptors (Wan et al., 1999). It has been
proposed that some effects of exogenous MEL in humans
(sedative, analgesic, anticonvulsive, anxiolytic) could be
related to its interaction with the GABAergic system
(Golombek et al., 1996).

3. Effects of Melatonin on the Immune System. Ear-
lier studies reporting that pinealectomized rats dis-
played a structurally modified thymus and that MEL
treatment or pineal grafting prevented thymic involu-
tion in very old mice led to the concept that MEL could
affect the immune system (see Provinciali et al., 1996;
Liebmann et al., 1997; Reiter et al., 2000a; Maestroni,
2001 for reviews). In vivo, high exogenous doses of MEL
show a general stimulation of the immune system. It
increases T cell activity, lymphocyte growth, humoral
responses, and may inhibit thymus involution with age.
In vitro MEL also increases T helper and NK cell activ-
ities, the production of interleukin 2 and interferon
gamma, and the expression of interleukin 1 mRNA in
human monocytes. In summary, most authors agree on
an immuno-stimulating effect of MEL. These effects
may occur via a direct action of MEL on its receptor
since MEL-R have been identified in various tissues of
the immune system, namely thymus, spleen, lympho-
cytes, and T helper cells.

In addition, MEL acting as a chronobiotic may be
involved in the circadian organization of the immune
system (the number and activity of lymphocytes T, B,
and NK displaying a daily rhythmicity). It has also been
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proposed that MEL may mediate seasonal changes in
immune function, which is enhanced in short days with
longer MEL peak duration (Nelson and Drazen, 2000).

4. Antioxidant/Antiaging Property of Melaton-
in. The publication of a revitalizing effect of MEL or of
pineal youth transplants to old mice (Pierpaoli and Re-
gelson, 1994) raised a general interest for MEL as an
antiaging/antioxidant molecule. It was proposed that
the lipophilic MEL diffuses into the cell cytosol and
nucleus (Menendez-Pelaez and Reiter, 1993) to protect
cytosolic and nuclear macromolecules from free radical
cytotoxicity (see Reiter, 1995; Reiter et al., 2000b for
reviews).

The use of oxygen in cell metabolism leads to the
production of cytotoxic by-products that are reactive free
radical species (superoxide anion radical, peroxynitrite
anion, hydrogen peroxide, nitric oxide, and the highly
toxic hydroxyl radical), which destroy macromolecules
like DNA, lipids, and proteins leading to cell death via
apoptosis. High doses of MEL (in the micromolar range)
are reported to neutralize most of these cytotoxic mole-
cules, but especially the hydroxyl radical, which is scav-
enged in vivo by MEL, producing cyclic 3-hydroxyMEL
excreted in the urine. In addition, MEL is reported to
stimulate the activity of various antioxidant enzymes,
like superoxide dismutase or glutathione peroxidase,
but inhibits the pro-oxidant enzyme nitric oxide syn-
thetase.

Given that MEL could be a very powerful antioxidant
molecule, that the production of MEL decreases with age
(although this conception is now discussed, see Ken-
naway et al., 1999), and that the free radical effects are
involved in the processes of aging and cancer, it has been
suggested that maintaining MEL at a high level could
slow age- and cancer-related alterations (Reiter, 1995;
Reiter et al., 2000b). The anticarcinogenic effect of MEL
is best described in vivo and in vitro on the estrogen-
responsive mammary tumors (Tamarkin et al., 1981;
Blask and Hill, 1986; Hill and Blask, 1988; Scott et al.,
2001; Teplitzky et al., 2001; Kiefer et al., 2002). In vivo,
there is an inverse correlation between the nocturnal
level of plasma MEL and the number of estrogen recep-
tors in patients with an estrogen-dependent cancer. In
vitro, 1 to 100 nM MEL induces a 40 to 60% loss of
MCF-7 cells (human breast tumoral cells). This cytotoxic
effect of MEL is related to an apparent uncoupling of
oxidative phosphorylation and leads to morphologic al-
teration and autophagocytosis. MEL also affects estro-
gen receptor transcriptional activity by regulating sig-
nal transduction pathways. In addition, MEL has been
described as a potent supplement in the treatment or
cotreatment of cancer: as an antioxidant, it may protect
cell damage caused by carcinogens; as a chronobiotic, it
may help determine optimum timing for carcinogen best
efficiency; and it may act in synergy with the carcinogen
retinoic acid to markedly reduce mammary tumor gen-
esis in vivo.

It is noteworthy that most of these effects necessitate
pharmacological doses of MEL (in the micromolar range)
while plasma MEL concentrations are in the picomolar
range. Recent studies, however, suggest that MEL could
display antioxidant properties even at physiological lev-
els (Pozo et al., 1994; Benot et al., 1999). Nevertheless,
even if used at high doses, the therapeutic effect of MEL
should not be neglected. Additionally, it is proposed that
MEL could also serve to maintain synchronization of the
main biological functions and prevent disintegration of
the circadian oscillator in the course of aging (Arm-
strong and Redman, 1991).

D. Sites and Mechanisms of Action of Melatonin

The hormonal MEL message delivered by the pineal
gland is distributed rapidly via the systemic circulation
to all peripheral and central structures where MEL acts
via specific binding sites (see Weaver et al., 1991; Mas-
son-Pévet et al., 1994a, 1996; Morgan et al., 1994;
Vanecek, 1998; von Gall et al., 2002b for reviews).

The localization and pharmacological characterization
of the MEL binding sites were made possible in 1987
with the use of a radioiodinated MEL ligand (125I-MEL,
Vanecek et al., 1987). Two types of binding sites have
been characterized: the high-affinity sites (with a con-
stant of dissociation (KD) between 20 and 200 pM), and
the low-affinity sites (with a KD value in the nanomolar
range). Only the high-affinity sites have been character-
ized as receptors (MEL-R), and their genes cloned. Three
types of high-affinity receptors have been characterized
(see Reppert et al., 1996, for review; Dubocovich et al.,
2001 for latest nomenclature): MT1 (previously Mel1a)
present in all vertebrates, mainly in the brain; MT2
(previously Mel1b) present in all vertebrates, mainly in
the retina; and Mel1c, present in nonmammalian verte-
brates. The low-affinity binding sites, MT3, were re-
cently described as the quinone reductase 2 enzyme
(Nosjean et al., 2000).

The MT1 receptor has seven transmembrane domains,
specific to G-protein-coupled receptors, and are coupled
negatively to the adenylate cyclase (AC) system. Their
activation induces a decrease in forskolin-induced cAMP
accumulation (Carlson et al., 1989; Morgan et al., 1989).
This effect is generally mediated by a pertussis toxin-
sensitive G-protein (Gi/Go; Reppert et al., 1994). In the
PT, MEL-Rs are coupled to two types of G-proteins, one
sensitive to the pertussis toxin, the other to the cholera
toxin. Other effects of MT1 activation have also been
reported on the intracellular concentrations of cGMP,
diacylglycerol (DAG), inositol triphosphate (IP3), or
Ca2�; on the activity of protein kinase Ca2� and/or DAG-
dependent (PKC); on the expression of c-fos; on the phos-
phorylation of cAMP responsive element (CRE)-binding
protein (CREB); and on membrane potential.

Currently, about 110 cerebral structures express MEL
binding sites. The number and nature of these struc-
tures display marked interspecific variations. In nearly
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all mammals, the SCN mainly express MT1 receptors
with the exception of the mink and sheep. The PT is an
endocrine structure characterized by a very high density
of MT1 receptors in all mammals except humans. The
MT2 receptor is present in the retina (Reppert et al.,
1995) and possibly in the brain and SCN as well (Dubo-
covich et al., 1998; Isobe et al., 2001). In the SCN, MT1
receptors would mediate the inhibitory effect on electri-
cal activity, whereas the MT2 receptor would mediate
the phase-shifting effect of MEL. Notably, a nonsense
mutation occurs in the MT2 coding gene in Siberian and
Syrian hamsters, which disables the receptor (Weaver et
al., 1996). MEL-Rs are present in the pineal gland of the
newborn rat, become rare in 9-day-old rats, and are not
detected in adults (Zitouni et al., 1995). MEL-Rs have
also been characterized in many peripheral structures
such as the Harderian gland, spleen, testis, ovary, vas-
cular system, gut, smooth muscle, and some cells of the
immune system (see Vanecek, 1998 for review).

E. Conclusion: Melatonin Is a Time-Giver Endocrine
Messenger

MEL is a time-giver (zeitgeber) hormone. It is charac-
terized by two rhythms of secretion: a 24-h rhythm with
a nocturnal peak and an annual rhythm closely depen-
dent on seasonal variations in the photoperiod. It is
possible that most, if not all, functions attributed to
MEL are related to the timing information it brings to
different structures. Studies performed to understand
the mechanisms of action of MEL in the regulation of
some seasonal and circadian functions have demon-
strated that the dynamic pattern of MEL secretion is
fundamental for its time-giving function. The rhythmic
pattern of MEL secretion is important because it brings
to organisms information about time that allows them to
adapt some of their physiological functions to the daily
and seasonal variations of their environment. It is thus
necessary to delineate the various processes and ele-
ments that regulate the rhythms of MEL synthesis and
secretion to understand how environmental factors are
transmitted to the whole organism.

III. Neural and Humoral Inputs to the
Mammalian Pineal Gland

The mammalian pineal gland is a neuroendocrine
structure targeted by numerous transmitters arriving
via neural or endocrine pathways.

A. Structure and Ultrastructure of the Pineal Gland

The mammalian pineal structure and ultrastructure
have been largely described in previous reviews (Voll-
rath, 1981; Pévet, 1983a). The pineal gland develops as
an evagination of the diencephalic roof. In most mam-
mals it forms a solid mass between the habenular and
posterior commissures, but in rodents, whereas a deep
and small part stays close to ventricle III, the major

portion of the gland migrates in a dorso-caudal direction
to form the superficial pineal, both parts being con-
nected by the pineal stalk (see Fig. 1). The rodent su-
perficial pineal gland is massively innervated and con-
tains a dense network of blood vessels into which MEL is
released. However, in the deep pineal gland, being made
of functional pinealocytes that express the genes coding
for the MEL-synthesizing enzyme with a day/night
rhythm (Ribelayga et al., 1998a; Garidou et al., 2001),
MEL could as well be directly released into the cerebro-
spinal fluid, as has been recently demonstrated in sheep
(Tricoire et al., 2002). In the course of phylogenesis, the
pineal gland has undergone marked transformations
(Collin, 1971; Korf et al., 1998). Being made of true
photoreceptors in lower vertebrates, in mammals it con-
sists of neuroendocrine cells, the pinealocytes, with no
direct light sensitivity but still expressing various pho-
toreceptor markers (rhodopsin, S-antigen, recoverin,
etc.). The mammalian pineal gland is a rather homoge-
nous tissue containing mainly true pinealocytes (mono-,
bi-, or tri-polar cells), few glial cells, phagocytic cells, and
rare neurons.

B. Neural Inputs

The pineal gland is innervated with nervous fibers of
various origins (Fig. 3). The main pathway consists of a
complex route named the retino-hypothalamo-pineal
pathway, ending with the sympathetic input to the pi-
neal parenchyma. The pineal gland also receives neural
inputs of central and parasympathetic origins. These
pineal nerve endings contain a large variety of neuro-
transmitters.

1. Retino-Hypothalamo-Pineal Pathway. The
rhythm in MEL synthesis depends essentially upon
three interdependent factors: the endogenous circadian
oscillator located in the SCN, the L/D cycle that synchro-
nizes the endogenous oscillator, and the light that
acutely inhibits nocturnal MEL synthesis. It is now well
established that there exists a multi-synaptic neural
pathway among the retina, SCN, and pineal gland. Var-
ious experiments (lesion, neuronal tracing) have allowed
researchers to draw the general diagram of the main
innervation of the mammalian pineal gland, especially
in the rat (Moore and Klein, 1974; Klein and Moore,
1979; Moore, 1996; Larsen, 1999; Teclemariam-Mesbah
et al., 1999).

a. The Retino-Hypothalamic Tract. Photic informa-
tion is conveyed from the retina to the ventro-lateral
zone of the SCN via the retino-hypothalamic tract
(RHT). The light-sensitive cells forwarding the light/
dark information do not appear to be the rod and cone
photoreceptors (Lucas et al., 1999), but rather are a
small subset of retinal ganglion cells containing the pho-
topigment melanopsin (Moore et al., 1995; Berson et al.,
2002; Hannibal et al., 2002; Hattar et al., 2002). The
RHT neurotransmitters are mainly glutamate (Glu)
(van den Pol, 1991; Ding et al., 1997) and pituitary
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adenylate cyclase activating peptide (PACAP) (Hannibal
et al., 1997), but not substance P (sP), as previously
thought (Takatsuji et al., 1991) mediating light signal-
ing to the clock (see Hannibal, 2002 for review). Other
inputs originating from the thalamic IGL, containing
neuropeptide Y (NPY), enkephalin (Enk), and GABA
(Card and Moore, 1982; Moore and Speh, 1993; Morin
and Blanchard, 2001) and from the raphe nucleus, con-
taining 5-HT (Moore et al., 1978) also carry photic and
nonphotic information to the SCN (Mrosovsky, 1996).

b. The Hypothalamic Endogenous Circadian Oscilla-
tor. In mammals, several experiments have demon-
strated the presence of an endogenous circadian oscilla-
tor in the SCN (see Ralph et al., 1990; Takahashi, 1995;
Turek et al., 1995 for reviews) probably located in every
SCN neuron showing an endogenous oscillation in firing
rate (Welsh et al., 1995). This endogenous activity is
higher during the subjective day and synchronized to
exactly 24 h by the photic inputs. The cellular and mo-
lecular basis of this circadian oscillation and its synchro-
nization are currently under active investigation. Sev-
eral proteins (PER1–3, TIM, CLOCK, BMAL/MOP3,
TAU/type I� casein kinase, cryptochrome 1–2) work as
transcription factors and enzymatic regulators in an
autoregulatory transcriptional feedback loop constitut-
ing the core of the circadian pacemaker (see Whitmore et
al., 1998, 2000; Dunlap, 1999; Ishida et al., 1999; Kume
et al., 1999; King and Takahashi, 2000; Lowrey and
Takahashi, 2000; van Esseveldt et al., 2000; Reppert
and Weaver, 2001 for reviews). Other elements of the
circadian clockwork are still being discovered. The cen-
tral step in transducing the intracellular cycling of mo-
lecular clocks to the rhythm in spontaneous firing rate

was recently demonstrated to involve L-type Ca2� cur-
rent (Pennartz et al., 2002). SCN neurons are mainly
peptidergic cells containing vasoactive intestinal pep-
tide (VIP), VP, gastrin-releasing peptide (GRP), and so-
matostatin (SOM), but also GABA (see Buijs et al., 1994,
1995; Inouye, 1996; van Esseveldt et al., 2000 for re-
views). Some of the peptides in the SCN display daily
and/or circadian rhythms in their synthesis and release,
thus being putative clock outputs.

It is suggested that the hypothalamic clock could also
be involved in the integration of seasonal information
(see Pittendrigh and Daan, 1976; Illnerova and Vanecek,
1985, 1987; Pévet et al., 1996; Goldman, 2001; Hastings,
2001; Schwartz et al., 2001 for reviews). For example,
FOS-light induction (Sumova et al., 1995; Vuillez et al.,
1996; Jacob et al., 1997) and Per1 gene expression (Mes-
sager et al., 1999b, 2000, 2001; Nuesslein-Hildesheim et
al., 2000) in the SCN displays MEL-independent photo-
periodic variations. In addition, the daily profile of vp-
mRNA differs in long and short photoperiods (Jac et al.,
2000). The integration of the photoperiod by the SCN
has been proposed to involve two components (one rec-
ognizing variations of the dawn, the other of the dusk)
with the increase (in the evening) and the diminution (in
the morning) of MEL synthesis being regulated sepa-
rately during photoperiod changes. The phase relation-
ship between these two oscillator components would de-
termine the duration of the nocturnal MEL peak
(Illnerova and Vanecek, 1985, 1987). Recent observa-
tions in cultured SCN slices of Syrian hamsters have
brought anatomical evidence for this concept (Jagota et
al., 2000). However, an alternative view proposes that
the photoperiod may be integrated into every SCN cell,

FIG. 3. Schematic representation of the various neural, endocrine, and paracrine inputs of the mammalian pineal gland. The main neural pathway,
which transmits light information to the pineal gland, is shown with thick arrows. In addition, numerous other neural or endocrine inputs are known
to reach the pineal gland. Note that there are interspecies differences in the density and origin of the afferent pineal nerve fibers and the nature of
the different pineal transmitters.
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into the molecular mechanism of the circadian clock
itself. By affecting the daily profile of the light-sensitive
Per expression (long under LP, short under SP), photo-
period may, in turn, affect the kinetics of the expression
of the clock proteins and consequently the expression of
all the clock-regulated genes (see Hastings, 2001 for
review). Although it has been demonstrated that photo-
period clearly regulates the daily profile of Per1 (Mes-
sager et al., 2000) and PER1 (Nuesslein-Hildesheim et
al., 2000) in the SCN, the link between changes in the
clock-gene expression profile and SCN outputs remains
to be established.

c. Suprachiasmatic Nucleus of the Hypothalamus Out-
puts to the Pineal Gland. Many studies seek to eluci-
date how the temporal information generated by the
SCN is transmitted to the organism to regulate many
rhythmic physiological and behavioral functions (see
Buijs, 1996; Buijs and Kalsbeek, 2001; Kalsbeek and
Buijs, 2002 for reviews). It is generally considered that
the ventro-lateral part of the SCN is the clock input area
for the synchronizing events while the dorso-median
part contains the oscillator and the output of the timing
information. Actually, various SCN neurons project
mainly to different hypothalamic structures to transmit
the timing information to different functional axes, es-
pecially the hypothalamo-pituitary-adrenal axis (rhyth-
mic secretion of corticosterone) and the hypothalamo-
pineal axis (rhythmic secretion of MEL). Recently, the
link between the SCN output and the circadian rhythm
in locomotor activity was proposed to be the transform-
ing growth factor � acting on the hypothalamic subpara-
ventricular zone (Kramer et al., 2001). In addition, the
SCN could regulate peripheral endocrine organs via the
autonomic nervous system (Buijs et al., 1999, 2001;
Kalsbeek et al., 2000a; La Fleur et al., 2000). The in-
creasing use of cDNA microarrays will help to identify
new clock-controlled genes in various tissues (Akhtar et
al., 2002; Duffield et al., 2002; Humphries et al., 2002).

In the rat, the SCN neurotransmitters involved in the
clock output would be essentially VP and GABA (Moore
and Speh, 1993; Buijs et al., 1994; Kalsbeek et al., 1995;
1996a). VP appears to be a good clock-controlled trans-
mitter since 1) it displays a circadian rhythm of synthe-
sis and release (Reppert, 1985; Murakami et al., 1991;
Kalsbeek et al., 1995; Watanabe et al., 2000); 2) its gene
promoter, containing an “E-box,” is under the direct
control of the clock genes (Jin et al., 1999); and 3) it acts
on the dorsomedial hypothalamus to control the circa-
dian rhythm of corticosterone synthesis and release
(Kalsbeek et al., 1996b). In addition, VIP (Teclemariam-
Mesbah et al., 1997a), glutamate (Cui et al., 2001), or
another unknown diffusible substance (Silver et al.,
1996; Allen et al., 2001) may also be non-neural outputs
of the molecular clock.

As far as the regulation of MEL synthesis is con-
cerned, the hypothalamic paraventricular nuclei (PVN)
are an essential relay between the SCN and the pineal

gland. PVN lesions abolish the rhythm of MEL synthesis
in the pineal gland (Klein et al., 1983), PVN neurons
respond to an electrical stimulation of SCN cells
(Hermes et al., 1997), VIP or VP infusion in the PVN
elevates pineal melatonin release (Kalsbeek et al.,
1993), and retrograde labeling from the pineal gland is
seen in the PVN (Larsen, 1999; Teclemariam-Mesbah et
al., 1999). GABA appears to be involved in transmitting
signals from the SCN to the PVN since infusion of a
GABA antagonist during the subjective day in the PVN
area stimulates MEL synthesis, whereas infusion of
GABA during the night inhibits nighttime MEL secre-
tion (Kalsbeek et al., 1996a, 1999, 2000b). SCN lesions
abolish the daily rhythm of MEL synthesis but keep
MEL at a level intermediate between daytime and
nighttime values. These data indicate that the SCN is a
daytime inhibitor (via GABA) of the PVN stimulation of
MEL synthesis, and is probably also a nighttime stimu-
lator (Kalsbeek et al., 2000b).

The dorsal and lateral parvocellular neurons of the
PVN, containing oxytocin (OT) and VP, reach the inter-
mediolateral cells (IML) of the upper three segments of
the spinal cord (Gilbey et al., 1982; Yamashita et al.,
1984; Cechetto and Sapper, 1988; Teclemariam-Mesbah
et al., 1997b; Larsen, 1999). Diurnal inhibition of pineal
gland activity could also take place at this level since 1)
infusion of VP and especially OT in the IML inhibits the
electrical activity of the preganglionic neurons of the
spinal cord (Gilbey et al., 1982); and 2) inhibition of MEL
synthesis following PVN electrical stimulation (Reuss et
al., 1985; Olcese et al., 1987) is abolished in VP-deficient
Brattleboro rats (Reuss et al., 1990). The IML neurons
innervate the rostral pole of the superior cervical gan-
glion (SCG) neurons that project to the pineal gland
(Strack et al., 1988; Reuss et al., 1989). This last step is
excitatory since electrical SCG stimulation increases
MEL release (Bowers and Zigmond, 1980). ACh is the
main neurotransmitter released in the SCG (Kasa et al.,
1991), but other neurotransmitters, especially SOM,
VIP, histidine isoleucine peptide (PHI), and calcitonin
gene-related peptide (CGRP) are potential candidates in
the transmission of information to the SCG. Approxi-
mately 0.5 to 1% of SCG neurons project to the pineal
gland (Bowers et al., 1984; Larsen, 1999).

The mammalian pineal gland is characterized by a
very dense sympathetic innervation (see Kappers, 1960;
Korf, 1996; Møller, 1999; for reviews). The first demon-
stration of the presence of neurotransmitters in the rat
pineal gland was made using the technique of Falck et
al. (1962), which showed the presence of NE in the
sympathetic fibers of the pineal gland. In the rat (Zhang
et al., 1991) and sheep (Cozzi et al., 1992) pineal gland
most of the tyrosine hydroxylase (TH; the rate-limiting
enzyme for NE synthesis) immunoreactive fibers disap-
pear after the SCG removal (SCGx). The remaining fi-
bers could originate from central neurons. The sympa-
thetic fibers of the pineal gland also contain DA, 5-HT,
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VIP, and especially NPY. These fibers enter the distal
part of the pineal via the conarian nerves (nervi conarii).
Inside the pineal gland they follow the vascular system.
In some species, the fibers enter the gland parenchyma
and end between the pinealocytes. They never make
true synapses with the pinealocytes, but synaptic-like
junctions between NAergic endings and pinealocytes are
sometimes observed (Huang and Lin, 1984; Masson-Pé-
vet et al., 1987a). In some rodent species the sympa-
thetic fibers spread out of the pineal gland toward the
habenular nuclei (Korf et al., 1990). In some species, a
few pinealocytes of the deep pineal gland project to
neighboring central structures (the habenular nucleus,
the pretectal areas) where they make synapses (Korf et
al., 1986, 1990; Sato et al., 1991). The putative trans-
mitters involved have not been identified, but this ob-
servation suggests that the pineal gland could exert its
influence by a neuronal pathway in addition to the MEL
endocrine pathway. In the rat, the pinealocytes do not
show such projections (Korf et al., 1986; Ribelayga et al.,
1998a).

2. Central Pathways. In 1975–1985, numerous stud-
ies using electrophysiological and neuroanatomical tech-
niques demonstrated that the mammalian pinea Møller
l gland receives a diversified central innervation al-
though it is less dense than the sympathetic innerva-
tion. These observations have led to the hypothesis that
various central structures play a physiological role in
the regulation of the metabolic activity of the mamma-
lian pineal gland (see Korf and Møller, 1984, 1985; Korf,
1996; Møller et al., 1996, Møller, 1999; Moller and Bae-
res, 2002 for reviews).

The early ultrastructural observations had already
suggested the presence of extra-sympathetic fibers since
1) the pineal gland exhibits synaptic buttons containing
large (100 nm) granular vesicles (peptidergic type) or
small (40–60 nm) clear vesicles (cholinergic type); 2)
myelinated fibers observed in the pineal gland are still
preserved after SCGx (Lin et al., 1975; Schneider et al.,
1981; Møller and Korf, 1983a); and 3) lesions of the
habenular area induces the degeneration of fibers and
nerve endings in the rodent pineal gland (David and
Herbert, 1973; Ronnekleiv and Møller, 1979; Møller and
Korf, 1983a). Use of the horseradish peroxidase (HRP)
tracing technique has confirmed the existence of neural
connections between the brain and pineal gland in sev-
eral rodent species. When tracer was injected into the
pineal gland, HRP-positive fibers were observed in the
proximal part of the gland continuing either via the
posterior commissure or via the habenular commissure.
HRP-positive neurons were observed in the habenular
nuclei, the posterior commissure nuclei, the PVN and, in
some cases, the IGL (Korf and Wagner, 1980; Guérillot
et al., 1982; Møller and Korf, 1983b). These initial ob-
servations were confirmed by anterograde tracing from
the PVN (Møller et al., 1990a; Larsen et al., 1991), the
lateral hypothalamus (Fink-Jensen and Møller, 1990),

the habenular nuclei, and the IGL (Reuss and Møller,
1986; Mikkelsen and Møller, 1990; Mikkelsen et al.,
1991) showing positive fibers in the proximal part of the
pineal gland. The neurotransmitters observed in these
central fibers are mainly neuropeptides, especially VP
and OT (PVN: Buijs and Pévet, 1980), sP (habenular
nuclei: Ronnekleiv and Kelly, 1984), and NPY (IGL:
Mikkelsen et al., 1991). In addition, histaminergic fibers
originating in the tuberomammillary nucleus
(Mikkelsen et al., 1992), 5-HTergic fibers originating in
the dorsal raphe (Leander et al., 1998), and hypocretin
(HCRT)-containing fibers originating in the lateral hy-
pothalamus (Mikkelsen et al., 2001) were also demon-
strated in the rodent pineal gland.

The use of electrophysiological techniques has also
confirmed the existence of pineal fibers of central origin.
Stimulation of central structures such as the PVN, lat-
eral hypothalamus, amygdala, hippocampus, and espe-
cially the habenular nuclei induced an electrophysiolog-
ical response of the pinealocytes (Dafny, 1977;
Ronnekleiv et al., 1980; Semm, 1981, 1983; Reuss et al.,
1984, 1985). Furthermore, with the use of this technique
it was reported that light could be transmitted to the
pineal gland via the sympathetic system with a long
latency, but also via other central pathways with a
shorter latency (Dafny, 1980).

In summary, these studies have demonstrated that, in
addition to the dense sympathetic innervation, other
fibers of a lower density, originating from various cen-
tral structures (especially the habenular nuclei, PVN,
IGL, dorsal raphe, and lateral hypothalamus) innervate
the rodent pineal gland. Central fibers arrive and ter-
minate mostly in the proximal part of the pineal gland.
This does not exclude a physiological effect of these
central inputs because 1) electrophysiological and bio-
chemical connections occur between the pinealocytes
(Reuss et al., 1984, Saez et al., 1994) and 2) the stalk and
the deep part of the rodent pineal gland possess true
pinealocytes that contain the enzymes of MEL synthesis
(Ribelayga et al., 1998a; Garidou et al., 2001). In nonro-
dents, where the whole pineal gland is located close to
the third ventricle, the central innervation may be
denser and thereby functionally more important (see
Møller, 1999 for review). The existence of neural connec-
tions among the PVN, IGL, and raphe on the one hand,
and the pineal gland on the other hand, is of particular
interest because these three structures are involved in
the regulation of hypothalamic clock activity. In addi-
tion, the activity of these three structures is directly
(IGL, raphe) or indirectly (PVN) modulated by light.
Since short light exposure at night induces a very rapid
diminution of MEL synthesis and release (Klein and
Weller, 1972; Illnerova et al., 1979; Drijfhout et al.,
1996c), it is possible that the central pathway involved
in this rapid light inhibition (Dafny, 1980) passes
through one and/or another of these structures. The
results of selective lesion experiments have suggested
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that the central IGL-pineal pathway could be involved in
the rapid inhibitory effect of a light flash on the meta-
bolic activity of the pineal gland (Cipolla-Neto et al.,
1995; Bartol et al., 1997).

3. Parasympathetic Pathways. The presence of a
parasympathetic innervation of the pineal gland has
long been debated (see Phansuwan-Pujito et al., 1999,
for review). However, localization of pinealopetal fibers
originating in the pterygopalatine and the otic ganglia
(Shiotani et al., 1986; Møller and Liu, 1999) together
with the demonstration of pineal cholinergic fibers in
the rat (Eranko et al., 1970), ferret (David and Herbert,
1973), rabbit (Romijn, 1973), monkey (David and Ku-
mar, 1978), and cow (Phansuwan-Pujito et al., 1990,
1991b) have demonstrated the occurrence of a parasym-
pathetic input to the pineal gland. Besides ACh, VIPer-
gic fibers originating from parasympathetic ganglia
have also been observed in the rodent pineal gland
(Shiotani et al., 1986; Møller and Liu, 1999). In addition,
demonstration of receptors and biochemical effects of
cholinergic and VIPergic ligands in the pineal gland (see
Sections VI.A. and VI.B.) confirm the existence of para-
sympathetic control of pineal activity.

4. Pathways from Other Neural Structures Retro-
grade tracing studies have demonstrated that the tri-
geminal ganglia project directly to the rodent pineal
gland (Shiotani et al., 1986; Reuss et al., 1992a; Møller
and Liu, 1999; Reuss, 1999). These fibers contain sP,
CGRP, and PACAP. The trigeminal input to the pineal
gland is interesting because to date this ganglion has
only been considered a sensory ganglion.

C. Endocrine Inputs

Because the pineal gland is outside the blood-brain
barrier in most species, substances secreted into the
bloodstream may affect pineal activity as long as recep-
tors for those substances are present in the pineal gland
(see Moller and Baeres, 2002 for review). For example,
this has been shown for the pituitary peptides and go-
nadal hormones. Radioactive labeled peptides such as
luteinizing hormone-releasing hormone (LHRH; Red-
ding and Schally, 1973), melanin-stimulating hormone
(Kastin et al., 1976), and delta-sleep inducing peptide
(DSIP; Graf and Kastin, 1984) injected into the blood-
stream accumulate in the pineal gland. VP and OT,
released into the circulation during osmotic regulation
or during parturition and lactation, may also act on
pineal activity. VP, for example, concentrates in the
pineal gland (Zlokovic et al., 1991). Other circulating
peptides such as natriuretic factors may also alter pineal
activity since in vitro effects of these peptides have been
observed. Some gonadal steroids also concentrate in the
pineal gland, where they alter its activity (Nagle et al.,
1972, 1974).

D. Paracrine Inputs

In the pineal gland MEL is synthesized from intracel-
lular 5-HT, then released into the bloodstream. It has
been reported that 5-HT (see Section VI.B.1.) and MEL
(see Section II.C.1.) display additional autocrine/para-
crine effects. Pineal cells also contain GABA (15% of
bovine pineal cells: Rosenstein et al., 1989b), Glu (Mc-
Nulty et al., 1992), aspartate (Imai et al., 1995), and
taurine (LaBella et al., 1968), which are able to alter the
metabolic activity of the pineal gland (see Section VI.B.).
Intrapineal neurons immunopositive for acetylcholines-
terase have been identified in the pineal gland of several
mammalian species (Romijn, 1975; Phansuwan-Pujito et
al., 1999). Growth factors are present in the pineal gland
(Garcia-Maurino et al., 1992) where they favor neurite
development of the pinealocytes (McNulty et al., 1993).

A particularity of the mammalian pineal gland is the
ability to synthesize various peptides that are able to
alter its metabolic activity. However, the original data
showing this were the subject of discussion because the
immunocytochemistry technique used poorly specific an-
tibodies (see Pévet et al., 1980b for discussion). Later on,
the techniques of in situ hybridization (ISH) and reverse
transcription followed by polymerization chain reaction
(RT-PCR) have confirmed peptide synthesis in mamma-
lian pineal cells. Cells containing Enk have been char-
acterized in the rodent pineal gland (Schröder et al.,
1988; Aloyo, 1991; Coto-Montes et al., 1994). In the
European hamster, Enk-containing cells display synap-
tic-like connections with other pineal cells (Coto-Montes
et al., 1994), suggesting a paracrine function of this
peptide. In the rat, combined studies of ISH for pre-
proEnk and immunocytochemistry for 5-HT have shown
that cells expressing the peptide (approximately 7%) are
not pinealocytes, but rather glial cells (Wang et al.,
1996). Pineal cells also contain LHRH (rat, Pévet et al.,
1980b), SOM (rat, Pévet et al., 1980b; Møller et al.,
1995), sP (cotton rat, Matsushima et al., 1994), C-type
natriuretic peptide (CNP) (cytoplasmic vesicles of bovine
pineal cells, Middendorff et al., 1996). The pineal gland
of the Syrian hamster, but not the rat, displays a few
cells containing secretoneurin (SN) (Simonneaux et al.,
1997a). The presence of VP in pineal cells is a matter of
discussion since the mRNA coding for VP has been de-
tected in the pineal gland of rat (Lepetit et al., 1993),
sheep (Matthews et al., 1993), and cow (Olcese et al.,
1993), but no VP-IR cells have yet been observed. This
suggests that VP is synthesized in low amounts in pineal
cells, the mRNA is present but not translated, or the
mRNA is present in VPergic neural fibers but not in
pineal cells. In contrast to VP, the presence of a few
OT-containing neuron-like cells in the bovine pineal
gland has been demonstrated both by ISH and immuno-
cytochemistry (Badiu et al., 2001). Several studies have
shown the presence of high concentrations of type �
melanin-stimulating hormone (�MSH) in the pineal
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gland of several species (Oliver and Porter, 1978;
Vaudry et al., 1978; Pévet et al., 1980b; Schröder et al.,
1988). The majority of peptide-containing cells are neu-
ron-like or modified pinealocytes displaying synaptic
contacts with the true pinealocytes. It is noteworthy,
however, that the density of these peptidergic cells is
usually very low. These active substances synthesized in
the pineal gland may display auto/paracrine effects in
the pineal gland because most of them are able to modify
pineal metabolism in vitro. It is evident that some of
these substances, in addition to MEL, could have an
endocrine function. However, currently there are no suf-
ficient data on this subject.

The observation of protein-containing granular vesi-
cles in the pineal gland of some species and of rare
exocytosis (Masson-Pévet et al., 1987b) has led to the
search for pineal-specific peptides displaying pro or an-
tigonadotropic effects. These studies have brought few
satisfactory results (see Pévet, 1981, 1983b; Vaughan,
1984 for reviews). A decapeptide isolated from the bo-
vine pineal gland has been characterized for its inhibi-
tory effect on prolactin secretion and luteinizing hor-
mone pulses (Benson and Ebels, 1994; Benson et al.,
1996).

E. Conclusion: The Pineal Gland Is a Junction of
Various Neural Inputs

The metabolic activity of the mammalian pineal gland
is mainly under the control of the hypothalamic clock, its
temporal message being delivered to the pineal gland by
a polysynaptic pathway ending with sympathetic fibers.
However, “the various neuroanatomical and immunocy-
tochemical data now have profoundly changed the
former concept that the mammalian pineal gland is
solely innervated by the sympathetic nervous system-
”(Møller, 1999). Actually, the pineal gland is the target
of several (neuro)transmitters of various origins (Fig. 3).
These findings have led to numerous biochemical stud-
ies to understand how, besides NE (see Section V.), these
other pineal transmitters regulate the synthesis of MEL
(see Sections VI.A. and VI.B.).

IV. Indoleamine Metabolism in the Mammalian
Pineal Gland

The metabolic activity of the pineal gland has already
been reviewed in earlier papers (Klein et al., 1981a;
Bittman, 1984; King and Steinlechner, 1985; Klein,
1985; Sugden, 1989).

A. Indoleamine Metabolic Pathways

Tryptophan (Trp), taken up from the bloodstream, is
the synthetic precursor of all the pineal 5-methoxyin-
doles (Fig. 4). Trp is metabolized into 5-hydroxy-Trp
(5-HTP) in the pineal mitochondria by Trp-hydroxylase
(L-Trp tetrahydropteridin:oxygen oxidoreductase; EC
1.14.16.4, TPOH) (Lovenberg et al., 1967), which is then

converted into 5-HT in the pineal cytosol by an aromatic
amino acid decarboxylase (EC 4.1.1.28, AAAD) (Loven-
berg et al., 1962; Snyder and Axelrod, 1964). A fraction
of 5-HTP may be methylated into 5-methoxytryptophan
(Balemans et al., 1978a,b). 5-HT is the initial substrate
of three different synthetic pathways:

1. 5-HT can be directly O-methylated by hydroxyin-
dole-O-methyltransferase (S-adenosyl L-methio-
nine: hydroxyindole-O-methyltransferase; EC
2.1.1.4; HIOMT) (Axelrod and Weissbach, 1960)
into 5-methoxytryptamine (Axelrod and Weiss-
bach, 1961);

2. 5-HT can be deaminated by monoamine oxidase
(amine:oxygen oxidoreductase; EC 1.4.3.4; MAO)
into 5-hydroxyindole-acetaldehyde (5-HIAL). This
compound is then either successively oxidized into
5-hydroxyindole acetic acid (5-HIAA) by an alde-
hyde dehydrogenase (aldehyde:NAD� oxidoreduc-
tase; EC 1.2.1.3) then O-methylated by HIOMT to
form 5-methoxyindole acetic acid (5-MIAA), or suc-
cessively reduced into 5-hydroxytryptophol (5-HL)
by an alcohol dehydrogenase (alcohol:NAD� oxi-
doreductase; EC 1.1.1.1) then O-methylated by
HIOMT to form 5-methoxytryptophol (5-ML);

3. The physiologically most important metabolic
pathway of 5-HT leads to the synthesis of MEL
(Weissbach et al., 1960; Axelrod et al., 1969). 5-HT
is first acetylated by arylalkylamine-N-acetyl-
transferase (acetyl CoA:arylalkylamine-N-acetyl-
transferase, EC 2.3.1.37; AA-NAT) into N-acetylse-
rotonin (NAS) (Weissbach et al., 1960; Voisin et al.,
1984), then O-methylated by HIOMT to form MEL
(Axelrod and Weissbach, 1960). In the rat, the
quantity of MEL in the pineal gland increases from
approximately 100 to 200 pg (0.43 to 0.86 pmol) per
gland during the daytime to 1 to 2 ng (4.3 to 8.6
pmol) per gland at night. This gives plasma con-
centrations of 10 to 20 pg/ml (43 to 86 pM) and 80
to 100 pg/ml (344 to 430 pM), respectively. MEL,
being a lipophilic molecule, it is not stored but
directly released by diffusion out of the pineal
gland. The half-life of MEL is approximately 20
min in the bloodstream (Gibbs and Vriend, 1981).
In the rat, it is rapidly degraded in the liver into
6-hydroxy-MEL via cytochrome P450 (Skene et al.,
2001), then sulfated into 6-sulfatoxy-MEL and
eliminated in the urine (Kopin et al., 1961; Kveder
and McIsaac, 1961). In the mouse, in contrast, mel-
atonin is metabolized into 6-glucuronylmelatonin
(Kennaway et al., 2002). Measurement of MEL in
the pineal gland or in the plasma at any given time
tightly reflects its synthesis (Illnerova et al., 1978).
These characteristics give MEL a highly dynamic
resolution that is essential for its time-giving prop-
erties.
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B. Tryptophan Hydroxylase

The rat pineal Tpoh gene codes for two transcripts of
1.8 and 4 kb (Darmon et al., 1988). They contain the
same coding sequence, but differ by the length of the 3�
noncoding region. The promoter region of the Tpoh gene
contains not a canonical CRE motif (Stoll and Goldman,
1991; Boularand et al., 1995), but an inverted CCAAT
box and a GC-rich region that bind the transcription
factors NF-Y and Sp1, both being essential for Tpoh
gene transcription at the basal level and following cAMP
treatment (Côté et al., 2002).

The TPOH protein, whose presence in the rat pineal
gland was demonstrated by Lovenberg et al. in 1967,

displays a rather short half-life, approximately 75 min
(Sitaram and Lees, 1978). It may be phosphorylated by
the cAMP-dependent protein kinase (PKA) (Ehret et al.,
1991; Johansen et al., 1995, 1996), a Ca2�/calmodulin
(CaM)-dependent protein kinase (PKCa2�/CaM) (Ehret
et al., 1989) and PKC (Ehret, 1994). In the pineal gland,
it has been demonstrated that stimulation of PKA in-
duces TPOH activation. TPOH activity measured in pi-
neal homogenates at optimal temperature (37°C) and
pH (7.5) and with saturating substrate concentrations,
varies between 6 (day) and 12 (night) nmol/h/gland
(Ehret et al., 1991). Para-chlorophenylalanine (p-CPA)
is a selective and powerful inhibitor of TPOH activity
(Deguchi and Barchas, 1972a,b).

FIG. 4. Metabolism of indoleamines in the mammalian pineal gland. The essential amino acid tryptophan (TRP) is the initial substrate for five
different synthetic pathways, of which the MEL metabolic route (thick arrows) is physiologically the most important. Note the central role of HIOMT.
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Tpoh gene expression and enzyme activity display
daily variations (Fig. 5). Their levels are already high
during the day and increase further during the night by
20% (Besançon et al., 1996) and 100% (Shibuya et al.,
1978; Ehret et al., 1991), respectively. The nocturnal
increase in TPOH activity is more sensitive to the action
of a protein synthesis inhibitor (cycloheximide) than to
that of a transcription inhibitor (actinomycin D), sug-
gesting that the increase results mainly from post-tran-
scriptional/post-translational mechanisms (Sitaram and
Lees, 1978, 1984; Ehret et al., 1991; Sun et al., 2002).

5-HT concentrations display a daily rhythm in the rat
pineal gland, with high values during the day (150 to
250 pmol/gland, approximately 0.5 mM) and lower val-
ues during the night (25 to 50 pmol per gland) (Snyder et
al., 1965b, 1967; Quay, 1974). These variations are op-
posite to that of MEL, and are therefore supposed to
reflect the nocturnal use of 5-HT to synthesize MEL
(Mefford et al., 1983). Recent results, however, have
shown that nocturnal synthesis and release of 5-HT is
more complex and is required for maximal NAergic stim-
ulation of MEL synthesis (Miguez et al., 1997; Sun et al.,
2002; see Section VI.B.1.).

C. Aromatic Amino Acid Decarboxylase

AAAD is an enzyme not specific to the pineal gland. It
is present in large quantities in the cytosolic fraction of
the pinealocytes (Snyder and Axelrod, 1964) and it is not
a limiting factor for the synthesis of 5-HT (see King and
Steinlechner, 1985 for review).

D. Monoamine Oxidase

MAO activity is detectable in the pinealocytes and in
the NAergic nerve endings (Yang et al., 1972). This
differential distribution reflects two types of MAO: type
A in the nerve terminals and type B in the pinealocytes.
These two types of MAO are characterized by different
biochemical properties and sensitivity to inhibitors. It
appears that MAO A is mainly involved in 5-HT oxida-
tion (King and Steinlechner, 1985; Masson-Pévet and
Pévet, 1989). Consequently, it has been proposed that
5-HT exits the pinealocytes to be oxidized in the NAergic
nerve terminals and then returns to the pinealocytes.
MAO activity displays day/night variation with higher
values during the day (see King and Steinlechner, 1985
for review).

FIG. 5. Intracellular effects following nocturnal adrenergic stimulation of rat pinealocytes. In in vivo conditions, NE is released at night and
activates two types of postsynaptic adrenergic receptors. Activation of the �1-type AR is required and sufficient to trigger MEL synthesis, and results
in a dramatic accumulation of the cyclic nucleotides cAMP and cGMP, although only cAMP is involved in the stimulation of MEL synthesis. Activation
of the �1-type AR has no effect per se on MEL synthesis but substantially potentiates �1-AR activation through Ca2� mobilization and PKC activation.
The marked increase in cAMP content induces two independent mechanisms: 1) cAMP activates PKA, whose catalytic subunit translocates into the
nucleus and in turn phosphorylates CREB. This event switches on the expression of different genes: those coding for the enzymes involved in MEL
synthesis and different classes of transcription factors, the repressor ICER, the clock proteins, and different IEGs. In the rat, the nocturnal increase
in MEL synthesis results primarily from a dramatic stimulation of Aa-nat gene expression and consequently of AA-NAT activity; 2) cAMP allows the
accumulation of active molecules of AA-NAT by inducing PKA-dependent phosphorylation of AA-NAT, which interacts with the chaperone protein
14-3-3, and protects AA-NAT from lysis by the cytosolic proteasome. In addition, PKA increases TPOH activity during the night. Toward the end of
the night the rapid clock-controlled decrease in adrenergic stimulation quickly lowers the cAMP intracellular content. Loss of the cAMP/PKA
protective effect on the AA-NAT molecules results in their lysis by cytosolic proteasome, and consequently leads to a rapid decrease in MEL synthesis
independent of Aa-nat mRNA.
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E. Alcohol and Aldehyde Dehydrogenases

Neither alcohol nor aldehyde dehydrogenase is satu-
rated by 5-HIAL. Pineal concentrations of 5-HIAA and
5-HL vary similarly with those of 5-HT. The 5-HIAA/
5-HL ratio is around 1:6, and is probably related to the
lower affinity of alcohol dehydrogenase for its substrate
(see King and Steinlechner, 1985 for review).

F. Arylalkylamine-N-Acetyltransferase

The AA-NAT enzyme, catalyzing N-acetylation of
5-HT, was first identified as the arylamine-N-acetyl-
transferase (EC 2.3.1.5; NAT) (Weissbach et al., 1960).
In reality, two types of N-acetyltransferase are present
in the pineal gland: the arylamine- and the arylalky-
lamine-N-acetyltransferase named after their best sub-
strates (Voisin et al., 1984). Because the affinity of 5-HT
is much higher for AA-NAT than for A-NAT, only the
former enzyme is involved in the rhythmic synthesis of
MEL. Its activity displays marked day/night variation,
especially in the rat (Klein and Weller, 1970).

The cDNA coding for Aa-nat has been recently iso-
lated, first in the rat (Borjigin et al., 1995; Roseboom et
al., 1996), then in sheep (Coon et al., 1995), human
(Coon et al., 1996), monkey (Klein et al., 1997; Coon et
al., 2002), mouse (Roseboom et al., 1998), cow (Craft et
al., 1999), Syrian hamster (Gauer et al., 1999), and rat
grass (Garidou et al., 2002) with few interspecies differ-
ences in the Aa-nat gene sequence (see Klein et al., 1997
for review). The Aa-nat gene is located on chromosome
11, in position E1.3–2.3, in the mouse, on chromosome
10q32.3 in the rat (Yoshimura et al., 1997), and on
chromosome 17q25 in the human (Coon et al., 1996). It is
organized into three introns and four exons. In mam-
mals, the Aa-nat gene codes for only one transcript
whose size varies between 1.0 and 1.7 kb according to
species. In most species, it may be expressed in several
tissues: 1) pineal and retina with a high level of expres-
sion; and 2) different nervous tissues (like PT, SCN,
hippocampus), and peripheral structures (mainly testis
and ovaries) with a much lower level of expression (see
Borjigin et al., 1995; Coon et al., 1996; Klein et al., 1997;
Fleming et al., 1999; Hamada et al., 1999; Uz and
Manev, 1999 for review). Besides the pineal gland and
retina, which synthesize MEL, whether AA-NAT regu-
lates local synthesis of 5-HT or NAS in other structures
remains to be established. In the rat, the promoter re-
gion of the Aa-nat gene has been studied (Fig. 5). It
contains one CRE-like sequence (differing by one base
from the perfect CRE sequence and named natCRE), an
inverted CCAAT box and an activating protein-1 (AP-1)
site (Baler et al., 1997). The natCRE site is capable of
binding the phosphorylated form of CREB (P-CREB),
whereas CCAAT box activation by specific binding pro-
teins (CATBP) also appears necessary for large activa-
tion of Aa-nat. cAMP-induced Aa-nat gene transcription
therefore requires activation of a CRE-CCAAT complex.

A perfect CRE site has also been recently characterized
in the promoter region of the Aa-nat gene, and appears
critical to achieve full stimulation of Aa-nat gene expres-
sion (Burke et al., 1999). Another cis-DNA sequence
named E-box (able to mediate transcriptional up regu-
lation via the action of the BMAL1/CLOCK heterodimer)
has been identified in the first intron of the rat Aa-nat
gene (Chen and Baler, 2000). However, transfection of
pinealocytes with Bmal1/Clock was unable to induce
Aa-nat transcription, whereas the same kind of trans-
fection in retinal cells led to activation of Aa-nat gene
expression (Chen and Baler, 2000). In the chicken pineal
gland, which in contrast to the mammalian pineal gland
contains an endogenous oscillator, the Aa-nat E-box
binds the BMAL1/CLOCK heterodimer that enhances
transcription (Chong et al., 2000). These data suggest
that 1) in the rat the regulation of Aa-nat gene expres-
sion is radically different in a slave (the pineal) com-
pared to a master oscillator (the retina where Aa-nat
gene is a possible output of the clock molecular loop),
and 2) chicken Aa-nat transcriptional activation by clock
protein heterodimers is critical for rhythmic expression
of the enzyme activity. Finally, the pineal Aa-nat gene
promoter contains a pineal regulatory element (PIRE)
that binds the transcription factor cone-rod homeobox
(CRX) that is exclusively expressed in photoreceptors
and pinealocytes (Li et al., 1998).

AA-NAT is an approximately 23-kDa soluble cytosolic
protein. It displays an N-terminal area involved in the
binding of the arylalkylamines and a C-terminal area
with two well preserved motifs, named A and B, which
are supposed to bind the cofactor acetyl coenzyme A (see
Klein et al., 1997, 2002 for reviews). According to the
deduced amino acid sequence, homology with the human
AA-NAT is 97% in the monkey, 84% in the sheep, and
90% in the rat. Several putative sites of phosphorylation
(for the PKA, the PKC, and the casein kinase of type II)
are present and well preserved across species (Klein et
al., 1997). The rat AA-NAT proteic structure is globular,
made of eight �-sheets and five �-helices (Hickman et
al., 1999). Recently, it was reported that AA-NAT pro-
tein activation requires phosphorylation on the Thr31

residue and then binding with the chaperone protein
14-3-3 with a ratio 1(AA-NAT)/1(14-3-3 protein). This
protein/protein interaction, yielding a relatively stable
complex, would lead to conformational changes, unfold-
ing the binding site of the two substrates onto the AA-
NAT protein (see Coon et al., 2001; Ganguly et al., 2001,
2002; Obsil et al., 2001; Klein et al., 2002 for reviews).
AA-NAT phosphorylation is a crucial step not only be-
cause it allows binding to the 14-3-3 protein and activa-
tion, but also because it shields AA-NAT from destruc-
tion by cytosolic proteasomes (Gastel et al., 1998;
Ganguly et al., 2002). Additionally, an intramolecular
disulfide bond between the Cys-61 and Cys177, formed
upon oxidation and cleaved upon reduction, is proposed
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to act as a catalytic switch for AA-NAT activation
(Tsuboi et al., 2002).

AA-NAT activity is usually measured in saturated
concentrations of tryptamine and at optimal pH (6.8)
and temperature (37°C) (Deguchi and Axelrod, 1972c;
Parfitt et al., 1975). In the rat, the enzyme activity
measured during the day is near the detection limit, and
between 5 and 20 nmol/h per gland at night. According
to our own observations, the mean AA-NAT activity at
midday is 0.046 � 0.015 nmol/gland/h (0.196 � 0.064
nmol/mg protein/h) and at midnight is 15.06 � 2.02
nmol/gland/h (62.74 � 12.13 nmol/mg protein/h). N-bro-
moacetyltryptamine (Khalil et al., 1999) and N-chloro-
acetyltryptamine (Zheng et al., 2001) are potent inhibi-
tors of AA-NAT activity in inducing a reaction of
alkyltransferase using another active site of the AA-
NAT enzyme.

In the rat pineal gland mRNA expression, protein, and
activity of AA-NAT are nearly undetectable during the
day and increase markedly (between 70- and 150-fold)
during the night (Borjigin et al., 1995; Klein et al., 1996;
Roseboom et al., 1996; Gastel et al., 1998; Garidou et al.,
2001; Fig. 5). The nocturnal increase in AA-NAT activity
requires a neo-transcription of its gene and a neo-syn-
thesis of its protein (Roseboom et al., 1996; Gastel et al.,
1998). The protein is very unstable (t1/2 about 3 to 5
min), as is the enzyme activity. At the end of the night or
following light exposure at night there is a very rapid
decrease (within a few minutes) of AA-NAT activity,
which is independent of the Aa-nat mRNA level and
therefore depends mainly upon post-translational mech-
anisms (Gastel et al., 1998, see below).

Because of the pronounced nocturnal increase in AA-
NAT activity observed in the rat pineal gland, this en-
zyme is usually considered the “rate-limiting enzyme”
for the synthesis of MEL. It is noteworthy, however, that
there is a high level of NAS release in vitro from NE-
stimulated cultured pinealocytes (Miguez et al., 1997)
and in vivo in the extracellular medium of microdialyzed
nocturnal pineal glands (Azekawa et al., 1991; Sun et
al., 2002). These observations suggest that part of the
NAS synthesized by AA-NAT is not used by HIOMT to
produce MEL, and thus in conditions of marked pineal
stimulation HIOMT, rather than AA-NAT, limits MEL
synthesis. The predominant feature of AA-NAT in the
pineal gland of most species is its large nocturnal in-
crease in activity that drives the daily rhythm in MEL
secretion, and as such should be considered the “MEL
rhythm-generating enzyme.”

Marked differences in the relative importance of the
transcriptional, translational, and post-translational
mechanisms involved in the nocturnal increase of AA-
NAT activity as well as in the amplitude of this increase
are observed among species (see Klein et al., 1997, for
review; Schomerus et al., 2000; Stehle et al., 2001; see
Section V.B.).

G. Hydroxyindole-O-Methyltransferase

HIOMT not only catalyzes the final step of the syn-
thesis of MEL, but also that of the other 5-methoxyin-
doles (Axelrod and Weissbach, 1961; Fig. 4). HIOMT
transfers a methyl group from the cofactor S-adenosyl-
L-methionine to its indolic substrate (Baldessarini and
Kopin, 1966). This enzyme represents a large part (2 to
4%) of the pineal proteic fraction (Jackson and Loven-
berg, 1971; Sugden et al., 1987b).

The cDNA coding for Hiomt was first isolated in the
cow (Ishida et al., 1987), then in chicken (Voisin et al.,
1992), human (Donohue et al., 1993), rat (Gauer and
Craft, 1996), and monkey (Coon et al., 2002), with large
species differences noted. The rat cDNA displays low
homologies with the cDNA of the cow (65%), human
(63%), and chicken (59%). In the rat the whole cDNA
sequence is 1728 bp long: the coding region contains
1101 bp, the 5�-noncoding region 184 bp and 3�-noncod-
ing region 444 bp (Gauer and Craft, 1996). The human
Hiomt gene is the best studied (Donohue et al., 1993;
Rodriguez et al., 1994; Bernard et al., 1995). It is located
in the pseudoautosomal region of the X chromosome and
codes for three transcripts containing a transposable
long interspersed element 1 (LINE-1) fragment. Two
promoters, containing different cis-regulatory elements,
have been characterized: one promoter A, whose expres-
sion appears restricted to the retina (contains the
CCAATTAG sequence able to recognize transcription
factors specific for the retina) and one promoter B, con-
taining a CRE and an AP-1 site, whose strong expres-
sion in the pineal gland is induced by a pineal specific
regulatory element still to be determined (Rodriguez et
al., 1994; Fig. 5). This pineal specific regulatory element
may be CRX. Indeed, PIRE, the CRX binding site, has
been reported in the promoter of human (Li et al., 1998)
and chicken (Bernard et al., 2001) Hiomt. In addition,
CRX binding to cis-elements of the chicken Hiomt pro-
moter enhances transcription of Hiomt (Bernard et al.,
2001). The putative amino acid sequence of the rat
HIOMT displays 66%, 69%, and 60% homology with that
of the cow, chicken, and human, respectively. In the rat,
the translated protein is made of 367 amino acids with
putative sites of phosphorylation for PKC (3), type II
casein kinase (4), and tyrosine kinase (1) (Gauer and
Craft, 1996).

In the species studied so far, the enzyme displays a
high molecular mass (between 76 and 78 kDa) and is
made up of two similar subunits of about 39 kDa each. In
the cow, it has been suggested that the subunits could
form polymers of a very high molecular weight (Jackson
and Lovenberg, 1971). Immunochemical experiments
have revealed a large heterogeneity in the protein struc-
ture and enzymatic properties among species (Nakane et
al., 1983). The protein appears very stable (t1/2 � 24 h)
(Sugden et al., 1987b; Janavs et al., 1991; Bernard et al.,
1993, 1995, 1996).
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The HIOMT activity assay is performed on pineal
homogenates in saturated concentrations of substrate
(NAS) and cofactor (S-adenosyl-L-methionine), at opti-
mal pH (7.9) and temperature (37°C) according to the
method of Axelrod and Weissbach (1960, 1961). The rat
pineal HIOMT activity is between 0.7 and 2 nmol/mg
protein/h (Sugden et al., 1987b; Ribelayga et al., 1997,
1998b, 1999a,b). HIOMT activity has been measured in
the retina and the Harderian gland, although at much
lower levels (Quay, 1965; Cardinali and Rosner, 1971;
Cardinali and Wurtman, 1972; Nagle et al., 1972, 1973;
Pévet et al., 1980a; Wiechmann and Hollyfield, 1989;
Bernard et al., 1995; Gauer and Craft, 1996; Djéridane
et al., 1998; Ribelayga et al., 1998a). Enzyme studies
suggest that the pineal and retina HIOMT are similar,
but quite different from HIOMT in the Harderian gland
(Cardinali and Wurtman, 1972). These findings are
strengthened by the observation that cDNA from the
retina can be amplified with specific pineal Hiomt prim-
ers (Gauer and Craft, 1996). On the contrary, in the
Harderian gland, all attempts of RT-PCR amplification
and ISH with a pineal Hiomt sequence failed (Ribelayga,
unpublished observations). Very weak HIOMT activity
has also been described in the duodenum and colon,
probably in the enterochromaffin cells (Quay and Ma,
1976), in the human retinoblastoma Y79 cell line (Ber-
nard et al., 1995, 1996), and in ovaries (Itoh et al., 1997).
RT-PCR experiments have also shown the presence of
HIOMT mRNA in human platelets (Champier et al.,
1997) and the testis (Poirel and Gauer, personal commu-
nication).

In the rat pineal gland, the best substrate for HIOMT
is NAS (Axelrod and Weissbach, 1961; Cardinali and
Wurtman, 1972; Morton, 1986, 1987). In relative values
the enzyme affinity for NAS is between 50 and 80%, for
5-HL between 15 and 30%, for 5-HT around 10%, and for
others (5-HTP, 5-HIAA) less than 5%.

In contrast to AA-NAT, the nocturnal increase in pi-
neal HIOMT activity is so low that its occurrence was
disputed (for example, see Axelrod et al., 1965 versus
Quay, 1967), especially since the activity of the enzyme
cannot be stimulated in vivo (Nagle et al., 1973; Ribe-
layga et al., 1999b) or in vitro (Klein et al., 1970; Berg
and Klein, 1971; Ribelayga et al., 1997) by an NAergic
agonist. We recently confirmed, however, in several in-
dependent studies that rat pineal HIOMT activity dis-
plays a weak but significant nocturnal increase (by 40 to
50%) (Ribelayga et al., 1997, 1999b). This increase per-
sists in constant darkness (D/D) and is inhibited in con-
stant light (L/L) (Ribelayga et al., 1999b). Only one
study has reported a large (18-fold) nocturnal increase
in HIOMT activity of the rat pineal gland (McLeod and
Cairncross, 1993).

Hiomt gene expression is already high during the day
but still displays a 2-fold increase at night that persists
in D/D (Gauer and Craft, 1996; Ribelayga et al., 1999b;
Fig. 5). Light exposure at night rapidly (t1/2 � 20 min)

decreased the level of Hiomt mRNA (Ribelayga et al.,
1999b). A �-adrenergic receptor (�-AR) agonist stimu-
lated daytime levels of Hiomt mRNA, whereas a �-AR
antagonist inhibited it (Gauer and Craft, 1996; Ribe-
layga et al., 1999b). In vitro, neither cAMP nor NAergic
agonists stimulated short-term (6 h) HIOMT enzyme
activity, suggesting that the nocturnal increase in pineal
HIOMT activity does not result from nocturnal stimula-
tion of Hiomt gene expression, but rather from NAergic-
independent post-transcriptional mechanisms (Ribe-
layga et al., 1997b, 1999b). However, NPY has been
shown to stimulate HIOMT activity (�30 to 40%) in
cultured rat pinealocytes within a few hours, suggesting
involvement of this peptide in the daily regulation of
HIOMT activity (Ribelayga et al., 1997). The short-term
regulation of the enzyme appears to involve Ca2� and
PKC-dependent mechanisms since its activity can be
stimulated by about 30% by thapsigargin or by a phorbol
ester (Ribelayga et al., 1997). It is therefore interesting
to note that, at least over the short term, the activity and
expression of HIOMT appears to be regulated by differ-
ent neurotransmitters using different mechanisms, sug-
gesting a complex control of this enzyme activity in the
rat pineal gland. This hypothesis is strengthened by the
ontogenetic study of Hiomt gene expression and activity
in the rat pineal gland, where the daily variation in
Hiomt mRNA appeared 10 days before the daily varia-
tion in enzyme activity (Ribelayga et al., 1998b).

Several in vivo studies have repeatedly demonstrated
that HIOMT activity is regulated over several days/
weeks by the nocturnal NAergic stimulation of the pi-
neal gland. Indeed, in the rat, SCGx or exposure to L/L
for several days induces a large decrease (2- to 3-fold) of
HIOMT activity compared to animals kept in an L/D
cycle (Wurtman et al., 1963; Axelrod et al., 1965; Quay,
1967; Moore and Rapport, 1971; Yang and Neff, 1976;
Sugden and Klein, 1983b; Ribelayga et al., 1997, 1999b).
The decrease in enzyme activity corresponds to a reduc-
tion of the quantity of protein (Yang and Neff, 1976).
This decrease is abolished by daily injections of an NAer-
gic agonist (Sugden and Klein, 1983a,b,c; Ribelayga et
al., 1997). This long-term regulation of HIOMT activity
by NAergic stimulation has been confirmed in vitro on
long-term cultures of pinealocytes (Ribelayga et al.,
1997). The long-term regulation of HIOMT activity is
due to high stability of the protein (t1/2 � 24h) (Sugden
et al., 1987b; Janavs et al., 1991; Bernard et al., 1993,
1995, 1996) and depends upon NAergic control of Hiomt
gene expression (Ribelayga et al., 1999a, b; see Section
V.A.7.).

Demonstration of specific regulation of HIOMT activ-
ity strongly suggests that this enzyme, in contrast to
what is generally described in the literature, is involved
in the rhythmic synthesis of MEL, especially the long-
term/seasonal rhythm in the nocturnal MEL peak pat-
tern, an important parameter for the transmission of
photoperiodic information. During the day AA-NAT ac-
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tivity is lower than HIOMT activity and would be the
limiting factor for the synthesis of MEL. The increase in
AA-NAT activity at the beginning of the night thus
induces the increase in MEL synthesis. During the
night, however, HIOMT activity is lower than AA-NAT
activity and would thus become the limiting enzyme for
MEL production. Consequently, any variation in night-
time HIOMT activity should modulate the rate of MEL
synthesis (the amplitude of the nocturnal MEL peak).
This hypothesis is strengthened by the following obser-
vations: 1) an excess of NAS is released in the extracel-
lular compartment at night (Azekawa et al., 1991; Sun
et al., 2002) or following NAergic stimulation (Berg and
Klein, 1971; Miguez et al., 1997); 2) the NAS concentra-
tion can be up to 2-fold greater than that of MEL in the
rat (Champney et al., 1984) and the Siberian hamster
(Steinlechner et al., 1995); 3) when Siberian hamsters
are transferred from LP to SP, the increase in the am-
plitude of the nocturnal MEL peak is not related to a
similar increase in nocturnal AA-NAT activity, but in
contrast to a decrease (Illnerova et al., 1984; Ribelayga
et al., 2000); and 4) in the Siberian hamster, parallelism
between daily variations of NAS and MEL is not always
observed throughout along the year (especially in Sep-
tember; Steinlechner et al., 1995).

The above observations have led us to study the long-
term, photoperiodic, and seasonal regulation of HIOMT
in vitro and in vivo. Using the model of long-term culture
of rat pinealocytes, we established an in vitro model with

controlled HIOMT and NAT activities. Pinealocytes
were cultured for 6 days in the presence or absence of
chronic �-adrenergic stimulation (1 �M isoproterenol)
then acutely (5 h) stimulated with 1 mM dibutyryl-
cAMP in both cases. This gave two conditions: 1) low
HIOMT/high AA-NAT and 2) high HIOMT/high AA-
NAT. We observed that at equally high AA-NAT activity
MEL production is lower when HIOMT activity is lower,
strongly indicating that the level of HIOMT activity may
limit the amplitude of MEL production (Simonneaux,
unpublished data). In vivo, in the rat, we have observed
that the duration of the nocturnal peak of Hiomt mRNA
is longer under SP (8L/16D) than under LP (16L/8D).
The SP increase in Hiomt gene expression led to a sig-
nificant increase (30 to 40%) in mean HIOMT activity
throughout 24 h, probably related to an augmentation of
protein synthesis (Ribelayga et al., 1999a; Fig. 6). In the
Siberian hamster pineal HIOMT activity is also twice as
high in SP than in LP, while the nocturnal AA-NAT
activity, in contrast, is twice as low under SP than under
LP. Whatever the photoperiod is, however, both en-
zymes display similar affinities for their respective sub-
strates, demonstrating that the photoperiodic differ-
ences in the enzyme maximal reaction velocity, Vmax,
correspond to differences in enzyme quantity (Ribelayga
et al., 2000). In the Siberian hamster, this photoperiodic
increase in HIOMT activity parallels a 2-fold increase in
the amplitude of the nocturnal MEL peak (Ribelayga et
al., 2000). These findings disclose an important physio-

FIG. 6. Photoperiodic regulation of HIOMT activity in the rat pineal gland. The rat Hiomt gene is constitutively expressed. In addition, Hiomt gene
expression is stimulated at night following NAergic stimulation, so that Hiomt mRNA levels are increased 2-fold. Under SP (or during winter) the total
amount of Hiomt mRNA produced daily is higher than under LP (or during summer). Consequently, more HIOMT molecules are produced per day
under SP than under LP and due to the high stability of the HIOMT protein, HIOMT activity increases in SP compared to LP. Under the experimental
conditions of constant light exposure (L/L) or SCGx, the nocturnal rise in Hiomt mRNA is abolished but its basal expression remains. Thus, after a
few days in these conditions, HIOMT reaches a low, stable level reflecting basal production of HIOMT molecules.
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logical impact of the photoperiodic control of HIOMT
activity on seasonal rhythms in MEL secretion (Ribe-
layga et al., 2000). In the European hamster, HIOMT
activity is significantly increased by 80% in November/
December in comparison with the earlier months (Ribe-
layga et al., 1998c). This increase is associated with an
increase in the concentrations of 5-ML during the day
(Ribelayga et al., 1998c) and MEL at night (Vivien-Roels
et al., 1997), suggesting that, in this species as well,
HIOMT displays an important role in the photoperiodic
control of pineal metabolic activity. We are currently
investigating the neurotransmitters and mechanisms
implicated in this regulation. In the rat, the photoperi-
odic variation in HIOMT activity is positively correlated
with the rate of Hiomt gene transcription, thus suggest-
ing an involvement of the NAergic stimulation (Ribe-
layga et al., 1999a). In the pineal gland of the European
hamster, the increase in HIOMT activity is associated
with a large increase in the number of NPYergic fibers
but not in TH-positive fibers from the end of October to
mid-December (Møller et al., 1998).

The previous observations strongly suggest that
HIOMT is involved in the photoperiodic/seasonal modu-
lation of the amplitude of the nocturnal MEL peak ob-
served in several photoperiodic species.

V. Noradrenergic Regulation of Melatonin
Synthesis in the Mammalian Pineal Gland

A. Noradrenergic Regulation of Melatonin Synthesis in
the Rat Pineal Gland

The observations that the mammalian pineal gland
has a dense noradrenergic (NAergic) innervation (Kap-
pers, 1960) and that SCGx suppresses nocturnal MEL
synthesis (Moore and Klein, 1974) were the origin of
numerous pharmacological, biochemical, and molecular
studies designed to delineate the effects of NE on the
metabolic activity of the pineal gland. These experi-
ments were performed mainly in the rat, although none
of its physiological functions are known to vary accord-
ing to the photoperiod (see Klein, 1985; Chik and Ho,
1989; Sugden, 1989; Klein et al., 1997 for reviews). Nev-
ertheless, the rat is able to perceive photoperiod
changes, to integrate these variations, and to modify the
daily synthesis of MEL accordingly. The knowledge ac-
quired in this species model is therefore fundamental.
However, it should be kept in mind that marked species
differences exist in the nocturnal stimulation of MEL
synthesis (see Section V.B.). In the rat, NE is the major
neurotransmitter involved in the SCN clock control of
the metabolic activity of the pineal gland. Rhythmic
SCN activity is translated, via positive and negative
outputs, as a nighttime stimulation of the SCG fibers
(see Buijs, 1996; Moore, 1996 for reviews; Kalsbeek et
al., 1999, 2000b). The amount of NE released from the
sympathetic fibers is approximately 100-fold higher dur-

ing the night than during the day (Drijfhout et al.,
1996c,d).

The pivotal role of NE in the control of rat pineal
metabolic activity has been supported by several exper-
iments: 1) intraperitoneal injections of an NAergic ago-
nist during the day stimulate MEL synthesis with a
comparable amplitude to that of the endogenous noctur-
nal increase (see King and Steinlechner, 1985 for re-
view); 2) SCGx abolishes the nocturnal increase in Aa-
nat mRNA, AA-NAT activity, and MEL synthesis
(Deguchi and Axelrod, 1972b; Roseboom et al., 1996;
Garidou et al., 2001); 3) electrical SCG stimulation dur-
ing the day provokes an increase in MEL synthesis in
the pineal gland (Bowers and Zigmond, 1980); 4) exoge-
nous NAergic stimulation of the pineal gland in organ
cultures (Klein and Berg, 1970) or in perifusion (Simo-
nneaux et al., 1989) or of pinealocytes in primary culture
(Buda and Klein, 1978; Simonneaux et al., 1994b) in-
duces a large increase in AA-NAT activity and MEL
release; 5) the synthetic rate and renewal of NE in the
pineal gland are higher at night than during the day
(Brownstein and Axelrod, 1974; Craft et al., 1984); and
6) the use of pineal microdialysis to study the in situ
regulation of MEL synthesis has demonstrated the pos-
itive coupling between the nighttime release of NE and
stimulation of MEL synthesis (Drijfhout et al., 1993,
1996c,d).

1. Adrenergic Receptors of the Pineal Gland Several
subtypes of adrenergic receptors (AR) are expressed in
the rat pineal gland.

a. Subtype �1 (�1-AR). This receptor is present at a
very high density on the postsynaptic rat pineal mem-
brane (600 fmol/mg protein in the rat pineal gland; Zatz
et al., 1976) where it is positively coupled via a Gs
protein to the membrane AC (Strada et al., 1972). Its
physiological importance has been demonstrated by
early in vivo experiments (see Deguchi and Axelrod,
1972a; Romero and Axelrod, 1974; Klein, 1985 for re-
view). The effect of NE appears to be mainly mediated by
this receptor subtype since in vivo injections of the
�1-AR agonist isoproterenol (ISO) during the day stim-
ulates AA-NAT activity up to nighttime values (Deguchi
and Axelrod, 1972a; Vanecek and Illnerova, 1983) while
an in vivo injection of the �1-AR antagonist propranolol
(PROP) strongly inhibits the nocturnal increase in AA-
NAT activity (Deguchi and Axelrod, 1972b). The density
of the �1-AR displays a circadian and daily variation,
with the highest density observed at the end of the
day/beginning of the night (see Romero and Axelrod,
1974; Pangerl et al., 1990, for review). mRNA expression
of �1-AR displays an opposite circadian rhythm, with
nighttime values being 2-fold higher than the daytime
values (Carter, 1993a; Møller et al., 1997; Pfeffer et al.,
1998).

b. Subtype �1 (�1-AR). This receptor is localized
postsynaptically in the pineal gland (180 fmol/mg pro-
tein in the rat; Sugden and Klein, 1984) where it is
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coupled to the phospholipase C (PLC) transduction sys-
tem involving IP3, Ca2�, and DAG (Klein, 1985). The
mRNA coding for both types 1A and 1B is expressed in
the rat pinealocytes, but only the protein of the 1B
subtype appears to be present (Sugden and Klein, 1984;
Sugden et al., 1996). The mRNA expression of these
receptors displays a circadian and daily variation, with
higher values at night (Coon et al., 1997). The receptor
density, however, shows no daily variation, but in-
creases 2-fold after 3 weeks in L/L or after SCGx (Sug-
den and Klein, 1985) suggesting a slow turnover of the
receptor protein.

c. Subtype �2 (�2-AR). This receptor has been char-
acterized pharmacologically as the �2-ARA/D subtype
(70 fmol/mg protein in the bovine and rat pineal glands,
Simonneaux et al., 1991a; Schaad and Klein, 1992). Sev-
eral in vivo and in vitro studies have shown that this
receptor is localized on the presynaptic NAergic termi-
nals, where it inhibits NE release (Pelayo et al., 1977;
Simonneaux et al., 1994b). Other studies, however, have
shown that this receptor is also present on the pinealo-
cyte membranes, where it indirectly activates a guany-
late cyclase (GC) (Venkataraman et al., 1998) and stim-
ulates AA-NAT activity (Schaad and Klein, 1992) and
MEL release (Mustanoja et al., 1999).

2. Second Messengers Induced by Noradrenergic
Stimulation. NAergic stimulation of the rat pineal
gland at night induces various intracellular events (Fig.
5):

1. Intracellular cAMP levels are increased about 100
times (Strada et al., 1972). This action of NE is
initiated by the �1-AR positively coupled by a Gs to
AC, which expression is maximal at night (Tzavara
et al., 1996). The activation of these �1-AR only
leads to a 10-fold increase in the cAMP level, the
maximal increase in cAMP levels is actually
reached when the �1-AR are activated at the same
time (Vanecek et al., 1985). Activation of the �1-AR
alone has no effect on cAMP, but it does potentiate
the �1-AR-induced increase in cAMP levels proba-
bly via a type I PKCa2�/CaM (Tzavara et al., 1996).
The main effect of the cAMP increase is to stimu-
late pineal PKA activity (Fontana and Lovenberg,
1971). A clear role for type II PKA in the cAMP-
mediated control of MEL synthesis has been dem-
onstrated, although a participation of type I PKA is
not excluded (Maronde et al., 1999b).

2. Intracellular cGMP concentration is also increased
about 100 times following NAergic stimulation
(Vanecek et al., 1985). As for regulation of cAMP,
the activation of the �1-AR alone leads to a 2- to
5-fold increase in cGMP levels (Sugden, 1990b)
while activation of both �1-AR and �1-AR induces a
20-fold further increase (Chik and Ho, 1989). It
appears that the �1-AR-induced increase in cGMP
is mediated by a Gs-protein-coupled GC, while

�1-AR potentiation involves activation of nitric ox-
ide (NO) synthetase (NOS) and the production of
NO, which stimulates cytosolic GC, and therefore
cGMP production (Spessert et al., 1993; White and
Klein, 1993, 1995). This finding is in agreement
with the following observations: Na� nitroprusside
(NO donor) stimulates cGMP accumulation in rat
pinealocytes (White and Klein, 1993); NE-induced
cGMP accumulation is inhibited by NOS inhibitors
(Lin et al., 1994); and the Ca2�/CaM sensitive form
of NOS is present and stimulated by NE (Lin et al.,
1994). Na� nitroprusside alone is able to stimulate
cGMP accumulation, indicating that the role of
�1-AR activation would be to make the NOS re-
sponsive to the Ca2�/CaM complex. The �1-AR are
also involved in the long-term regulation of NOS
activity (Schaad et al., 1994, 1995a). cAMP analogs
have no effect on cGMP levels whether they are
used alone or with NO donors (White and Klein,
1995).

3. Intracellular levels of Ca2� (Ca2�
i) are increased

following NAergic stimulation (Sugden et al.,
1987a; Saez et al., 1994; Schaad et al., 1995b; Scho-
merus et al., 1995; Marin et al., 1996; Simonneaux
et al., 1999). This cellular event results from the
specific activation of the �1-AR that are coupled to
the PLC transduction system and Ca2� channels
(Chik and Ho, 1989). The Ca2�

i increase is biphasic
with an initial rapid and transient peak resulting
from Ca2� release from the IP3-sensitive intracel-
lular stores, and a second sustained response re-
sulting from the opening of membrane Ca2� chan-
nels. This increase in Ca2�

i induces the
translocation and activation of PKC (Ho et al.,
1988a). It is noteworthy that in the pineal gland,
PKC is mainly activated by Ca2� and much less
(about 10%) by DAG (Ho et al., 1988b). It appears,
therefore, that the stimulatory effect of �1-AR on
cyclic nucleotide accumulation is mainly mediated
by Ca2� and PKC. However, cAMP potentiation
requires PKC activation or a Ca2� increase,
whereas cGMP potentiation requires both PKC ac-
tivation and Ca2� increase (Sugden et al., 1985b;
Ho et al., 1987a; Spessert et al., 1995). It is sug-
gested, therefore, that the �1-AR potentiation of
cAMP accumulation induced by Ca2� occurs via
PKC acting on Gs or AC (Sugden and Klein, 1988),
whereas �1-AR potentiation of cGMP is mediated
by a Ca2�/PKC complex and a PKCa2�/CaM since
it also requires activation of a PKCa2�/CaM-depen-
dent NOS (Ho et al., 1991; White and Klein, 1995).
Several isoforms of PKC are present in the rat
pineal gland, with different effects (Ogiwara et al.,
1998): the specific inhibition of � and �(1) PKC
isoforms by Go6976 (C24H18N4O) leads to a surpris-
ing increase in NE-stimulated cAMP and cGMP
levels, whereas the nonspecific PKC inhibitor cal-
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phostine C reduces the effect of NE. These data
suggest that some PKC (those sensitive to Go6976)
exert a tonic inhibition on cyclic nucleotide levels
(maybe through a phosphodiesterase), while others
potentiate �1-AR stimulation of cyclic nucleotide
synthesis.

4. Phospholipase A2 activity and subsequent arachi-
donic acid synthesis are increased following activa-
tion of �1-AR (probably through a PKC-dependent
mechanism; Ho and Klein, 1987). Arachidonic acid
metabolites may be involved in cGMP formation
(Chik et al., 1991).

5. Pinealocyte membrane hyperpolarizes following
NAergic stimulation (Parfitt et al., 1975). This ef-
fect results, at least partly, from a K� efflux pro-
voked by the opening of a Ca2�-sensitive K� chan-
nel (Cena et al., 1991). Activation of this channel
requires an increase in both cAMP and Ca2� levels
(Cena et al., 1991). The intracellular pH measured
in nonstimulated rat pinealocytes is 7.09 and in-
creases up to 7.20 following 10 �M NE stimulation
(Ho et al., 1989). This cytosol alkalinization results
from the �1-AR activation that produces the open-
ing of an Na�/H� antiport (Ho et al., 1989). This
alkalinization is thought to facilitate NE stimula-
tion of cyclic nucleotide content (Vanecek et al.,
1986; Ho et al., 1992). Some clusters of cultured
pinealocytes display action potentials whose fre-
quency is modulated by �1-AR activation (Schenda
and Vollrath, 1998). However, it is questioned
whether these endogenous action potentials are a
phylogenetic remnant of the lower vertebrates’ pi-
neal clock.

6. Phosphorylation of mitogen-activated protein ki-
nase (MAPK). In rat pinealocytes, the presence of
p42 and p44 isoforms of MAPK has been estab-
lished (Kiyama et al., 1994; Ho et al., 1999). In
addition, the presence of two upstream elements
involved in the regulation of MAPK, namely MEK1
and Raf1, has been reported (Ho et al., 1999). NE
alters MAPK phosphorylation through a dual
mechanism: stimulation of the cAMP/PKA path-
way inhibits while activation of the cGMP/PKG
transduction cascade stimulates MAPK phosphor-
ylation (Ho and Chik, 2000). However, the overall
effect of NE on MAPK phosphorylation is stimula-
tory via the cGMP/PKG pathway (Ho et al., 1999).
To date, the function of MAPK in rat pinealocytes
is still not known and its effect on MEL synthesis
has not been investigated.

3. The Third Messengers/Transcription Factors In-
duced by Noradrenergic Stimulation. The NE-induced
increase in second messengers leads to activation of
several transcription pathways: 1) phosphorylation of
the transcription factor CREB, which then activates
transcription of genes coding for the MEL-synthesizing

enzymes; 2) expression of the mRNA coding for the im-
mediate early genes (IEG); 3) expression of clock genes;
and 4) expression of specific pineal and retinal transcrip-
tion factors. In addition, the cDNA array analysis of
pineal gene expression may help to discover additional
genes coding for transcriptional regulators as, for exam-
ple, the rat pineal Id-1 gene encoding a helix-loop-helix
protein (Humphries et al., 2002).

1. The transregulator element CREB is constitutively
present in the pineal gland. Stimulation of �1-AR, but
not �1-AR, induces a large and rapid phosphorylation of
CREB into P-CREB (Roseboom and Klein, 1995) in
nearly all pinealocytes (Tamotsu et al., 1995). CREB is
usually phosphorylated by PKA. Although Ca2� iono-
phores, �1-AR agonists, or cGMP analogs have no effect
on CREB, application of ouabain or a high KCl concen-
tration (which depolarizes the cells) results in CREB
phosphorylation (Roseboom and Klein, 1995). This latter
effect could be induced by the type I or IV PKCa2�/CaM,
which is able to phosphorylate CREB on the Ser133 and
induce its activation (Sun et al., 1996). In the rat pineal
gland, however, CREB phosphorylation is mainly in-
duced by the �1-AR/AC/cAMP/PKA transduction path-
way (Roseboom and Klein, 1995). P-CREB is a key ele-
ment in the regulation of pineal gene expression,
therefore regulatory mechanisms involved in P-CREB
dephosphorylation deserve careful study.

P-CREB enhances expression of the genes coding for
the enzymes of MEL synthesis, which are endowed with
putative CRE sites in their promoter region reported as
Aa-nat (Baler et al., 1997; Burke et al., 1999) and Hiomt
(Rodriguez et al., 1994). In addition, stimulation of Aa-
nat (Roseboom et al., 1996) and Hiomt (Ribelayga et al.,
1999b) gene expression is not inhibited in the presence
of the protein synthesis inhibitor cycloheximide, sug-
gesting that a constitutive element such as CREB is
involved (after phosphorylation) in the nocturnal stim-
ulation of the expression of these genes (see Foulkes et
al., 1996a, 1997 for reviews). It has been recently
stressed, however, that P-CREB does not totally account
for the entire cAMP effect on Aa-nat gene expression;
the phosphatase inhibitor okadaic acid, which increases
P-CREB independently of cAMP formation, does not
induces Aa-nat gene expression, and induces low Icer
gene expression but full Fra2 and JunB mRNA (Spes-
sert et al., 2000); cAMP may activate AP-1-binding ac-
tivity besides CREB phosphorylation (Carter, 1994); and
activation of both the CRE and the CCAAT sites of the
Aa-nat promoter are needed for full Aa-nat gene expres-
sion (Baler et al., 1997).

In addition, P-CREB induces expression of a CRE-
related gene that modulates the cAMP response, CRE
modulator (Crem) (Stehle et al., 1993). The Crem gene is
transcribed into different splice variants that are trans-
lated into proteins that activate (CREM �, �, �) or in-
hibit (CREM �) CRE activity according to the tissue or
developmental state (see Foulkes and Sassone-Corsi,
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1996 for review). Consequently, the protein CREM will
act either in synergy with P-CREB or compete with
P-CREB on the CRE sites. In the pineal gland, Crem is
strongly expressed in the form of a short size transcript.
In contrast to the other members of this family, its
expression is inducible by cAMP. It was found to code for
a protein exerting a strong inhibitory effect on cAMP-
induced transcription and was named after this effect,
inducible cAMP early repressor (ICER) (see Stehle et al.,
1993, 2001 for review). A cis-regulatory element that
binds CREB, but with a sequence slightly different from
that of CRE, is present in four copies in the promoter
region of icer and is named CARE (for CRE-like element:
TGATGTCA) (Foulkes and Sassone-Corsi, 1996). There
is a marked circadian rhythm of Icer expression with
higher levels at night (approximately 100-fold) com-
pared to daytime. Icer expression is induced by the
cAMP-dependent pathway triggered by �1-AR activation
and peptides like VIP or PACAP (Stehle et al., 1993;
Foulkes and Sassone-Corsi, 1996; Pfeffer et al., 1999). In
the perifused pineal gland of intact rats, Icer expression
is induced by ISO or cAMP analogs when applied at the
end of the day/beginning of the night, but not during the
day, supposedly because of the presence of the inhibitory
transcription factor ICER, this system representing a
negative feedback loop. This inhibitory effect of ICER
could be extended to all the other CRE sites, especially
that of the Aa-nat gene. This finding led Stehle et al.
(1993) to consider ICER as an element responsible for
the decrease in MEL synthesis at the end of the night.
However, this attractive hypothesis appeared not valid
when the decrease in AA-NAT activity and MEL synthe-
sis was found to occur a few hours before the decrease of
Aa-nat gene expression (Roseboom et al., 1996; Ribe-
layga et al., 1999a). There is a daily variation in pineal
ICER immunoreactivity, although with a relatively
smaller nighttime increase (approximately 4-fold) occur-
ring toward the late night/early day (ZT 18–0); in con-
trast, the stimulatory P-CREB peaks earlier at night (ZT
16–20) and declines toward the end of the night (ZT 22),
suggesting that the inhibitory transcription factor inhib-
its the cAMP-stimulated genes, particularly Aa-nat, to-
ward the end of the night (Maronde et al., 1999a). This
is strengthened by the finding that Aa-nat gene expres-
sion is increased following the Icer gene silencing either
in vivo (Foulkes et al., 1996a) or in vitro (Maronde et al.,
1999a; Pfeffer et al., 2000). It is possible that any pineal
gene whose promoter contains a CRE site may have its
expression down-regulated by ICER as reported for the
�1-AR coding gene (Pfeffer et al., 1998). In addition, it
has also been reported that Icer gene expression displays
photoperiodic variation, suggesting that the quite stable
ICER protein may be involved in the long-term (photo-
periodic) regulation of the cAMP-inducible expression of
genes, and therefore MEL synthesis (Foulkes et al.,
1996b; see Section V.A.7.).

2. Several IEGs are expressed in the rat pineal gland
following NAergic stimulation. The corresponding pro-
teins of the IEGs form homo- or hetero-dimers to become
AP-1 transcription factors. The expression of c-fos, c-jun,
junB, junD, NGFI-A, and Fra-2 has been characterized
in the rat pineal gland (see Baler and Klein, 1995;
Carter, 1997 for review). IEG expression can be initiated
by PKA (via P-CREB/CRE) or PKC. Translation of IEG
mRNA into protein is very rapid (30–60 min). NAergic
stimulation alters the expression of some pineal IEGs.
The relative role of both AR-types and associated trans-
duction pathways differs according to IEG. Expression
of c-fos mRNA displays a transient and rapid increase at
the beginning of the night, and then decreases gradually
during the night (Carter, 1990; Koistinaho and Yang,
1990, 1992). This increase is probably mediated by
�1-AR (Carter, 1992, 1993b), although ISO or dibutyryl-
cAMP may also induce FOS expression in cultured rat
pinealocytes (Tuulivaara and Koistinaho, 1991). Expres-
sion of junB follows a pattern similar to that of c-fos
(Carter, 1992), but the nocturnal increase is under the
dependence of both �1-AR and �1-AR activation (Carter,
1992, 1993c). The level of junD expression does not vary
in the course of the day and the application of AR ago-
nists or antagonists has no effect on its expression (Cart-
er, 1992). The expression of c-jun is partially suppressed
during the night following �1-AR activation (Carter,
1992). However, in vitro expression of c-jun is stimu-
lated by NE. This activation would result from the an-
tagonistic effects of two transduction pathways one ex-
citatory (PKC) and one inhibitory (PKA) (Carter, 1992,
1993b). The regulation of Fra-2 expression has been
particularly well characterized (Baler and Klein, 1995).
The Fra-2 mRNA and protein levels are undetectable
during the day and increase markedly at night. These
variations are circadian and depend mainly on �1-AR
regulation of the cAMP levels. The increase in Ca2�

i or
cGMP, or the �1-AR activation, has no effect on Fra-2
expression (Baler and Klein, 1995). The expression of
NGFI-A increases at the beginning of the night, then
remains elevated throughout the night, probably as a
result of both �1-AR and �1-AR coactivation (Carter,
1992).

The temporal distribution of the expression of the
various IEGs results in quantitative and qualitative
variations in the composition of the heterodimers in the
course of the daily cycle. Interestingly, junB and Fra-2
appear as major nocturnal players since 1) they accumu-
late in the pineal gland during the nocturnal phase; 2)
their repressor effect on transcriptional activity has
been established in many tissues; and 3) AP-1 activity in
the pineal gland displays a daily variation with higher
values during the nocturnal phase that mainly results
from the effect of Fra2 and junB (Carter, 1994, 1997;
Klein et al., 1997; Guillaumond et al., 2000). Fra2 was
expected to be an inhibitory transcription factor in-
volved in the decrease in Aa-nat mRNA in the morning
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(Klein et al., 1997). However, this hypothesis is ruled out
by the recent finding that pineal Aa-nat gene expression
is not altered in transgenic rats with a dominant nega-
tive Fra2 gene (Smith et al., 2001). The daily AP-1
variation in the pineal gland is probably involved in
some other transcriptional regulation. To date, however,
no functional relationship has been established between
the induction of IEGs and daily changes in MEL synthe-
sis (see Baler and Klein, 1995; Carter, 1997 for reviews).

3. Expression of clock genes has been reported re-
cently in the mammalian pineal gland. Since recent data
have demonstrated that numerous tissues, besides the
SCN, are endowed with the molecular clock machinery
(Balsalobre et al., 1998; Yamasaki et al., 2000), it was
logical to look for the expression of clock genes in the
mammalian pineal gland. Bma1l, Clock (Namihira et
al., 1999), Per1 and Per2 (Fukuhara et al., 2000;
Takekida et al., 2000; von Gall et al., 2001), Per3 (Simo-
nneaux, unpublished data), and Cry1 and Cry2 (Naka-
mura et al., 2001; Simonneaux, unpublished data) are
all expressed in the rat pineal gland.

Per1, Per2, Per3, Cry1, and Cry2 mRNA display daily
variations with a nocturnal increase peaking 2 h before
that of Aa-nat mRNA (Fukuhara et al., 2000; Takekida
et al., 2000; Simonneaux, unpublished data). The noc-
turnal increases of Per1 mRNA and PER protein
(Takekida et al., 2000; von Gall et al., 2001; Fukuhara et
al., 2002) and of Cry2 mRNA (Simonneaux, unpublished
data) are induced by the NE/�1-AR/cAMP pathway. Sur-
prisingly, the daily variations in Per2 (Takekida et al.,
2000; Fukuhara et al., 2002), Per3 and Cry1 (Simon-
neaux, unpublished data) expression do not appear reg-
ulated by �1-AR ligands. Clock and Bmal1 expression
displays slightly opposite daily variations, with Bmal1
mRNA being a little higher during the day (Namihira et
al., 1999).

The role of the circadian clock components in the
mammalian pineal gland is intriguing and still needs to
be delineated. Transfection experiments in rat pinealo-
cytes revealed, in contrast to what was observed in ret-
inal photoreceptors, a surprising inability of CLOCK/
BMAL1 to induce E-box-mediated stimulation of Aa-nat
gene expression (Chen and Baler, 2000). It was recently
reported that mPer1-luciferase activity oscillates for two
to three circadian cycles in isolated rat pineal glands
(Abe et al., 2002) and that Per1 expression may be stim-
ulated by CLOCK/BMAL1 in transfected pinealocytes
(Fukuhara et al., 2002). Experiments are now required
to delineate whether the pineal clock proteins are only a
reminiscence of the lower vertebrate clock pineal or dis-
play specific functions in the mammalian pineal gland
(investigating the effect of clock gene silencing on MEL
synthesis and photoperiodic regulation).

4. A specific transcription factor has been character-
ized in the pineal gland and the retina (Li et al., 1998).
The pineal gland and retina contain the specific tran-
scription factor CRX that may regulate their differenti-

ation and drive the spatial expression of genes exclu-
sively expressed in the photoreceptors and pinealocytes.
CRX binds the cis-regulator PIRE site (TAATC/T),
which is found in the promoter of Aa-nat (3 copies) and
Hiomt (1 copy in each of the A and B promoters). The Crx
gene is highly expressed in the pineal gland and displays
a 3-fold nocturnal increase with a peak preceding that of
Aa-nat mRNA. Recently, the importance of CRX in MEL
synthesis was highlighted by the report that Aa-nat
gene expression is strongly reduced in Crx-deficient
mice (Furukawa et al., 1999). These observations sug-
gest that CRX could play an important function in the
regulation of pineal gene expression and may be in syn-
ergy with the �1-AR/cAMP/PKA/P-CREB pathway.

4. Acute Effects of Noradrenergic Stimulation on the
Melatonin Synthesis Pathway. 1) Activation of the
cAMP/PKA pathway is the major nocturnal event that
stimulates MEL synthesis (Klein and Berg, 1970; Klein
et al., 1970, 1996; Berg and Klein, 1971; Roseboom et al.,
1996). Although the daytime levels of Tpoh mRNA and
activity are elevated, activation of the cAMP/PKA path-
way induces a small (13%) nocturnal increase in Tpoh
gene expression, probably through the effect of P-CREB
(Besançon et al., 1996, 1997) and phosphorylation/acti-
vation of TPOH (Johansen et al., 1995, 1996). These
events result in a 2-fold nocturnal increase in TPOH
activity (Ehret et al., 1991). Importantly, the cAMP-
induced activation of PKA has several effects on AA-
NAT activation. First, the nocturnal increase in cAMP-
dependent P-CREB induces a massive (100–150-fold in
the rat) nocturnal increase in Aa-nat gene expression
(Borjigin et al., 1995; Roseboom et al., 1996; Garidou et
al., 2001). Translation of Aa-nat mRNA results in a large
increase (70–100-fold) in the protein level. Second, PKA
phosphorylates the Thr31 residue of AA-NAT, which in
turn binds to the 14-3-3 chaperone protein to become an
activated enzyme (Ganguly et al., 2001, 2002). Third,
phosphorylated AA-NAT is protected from proteasome
proteolysis (Gastel et al., 1998; Ganguly et al., 2001).
Nocturnal AA-NAT activation therefore requires tran-
scriptional, translational, and post-translational mech-
anisms mainly triggered by the cAMP/PKA pathway
(see Ganguly et al., 2002 for review). The phosphory-
lated AA-NAT/14-3-3 complex binds serotonin and ace-
tylCoA with high affinity and converts serotonin into
N-acetylserotonin. The daytime level of Hiomt mRNA is
rather high but still increases further (2-fold) following
nocturnal activation of the cAMP/PKA pathway (Gauer
and Craft, 1996; Ribelayga et al., 1999b). This effect does
not require de novo protein synthesis and is therefore
induced by a constitutive protein (Ribelayga et al.,
1999b), which may be P-CREB as indicated by the pres-
ence of a CRE site in the gene promoter. The activity of
HIOMT, however, is not acutely stimulated by cAMP
analogs, ISO or NE (Klein et al., 1970; Berg and Klein,
1971; Ribelayga et al., 1997, 1999b). The marked noc-
turnal increase in AA-NAT activity following activation
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of the �1/AR/cAMP/PKA pathway induces a large con-
version of 5-HT (its levels therefore decreasing at night)
into NAS, then MEL. 2) A nocturnal increase in Ca2�

i
and activation of PKC modulate MEL synthesis. The
NE-induced Ca2�

i increase potentiates the intracellular
elevation of cAMP levels and consequently AA-NAT ac-
tivation and MEL synthesis. This potentiating effect
results mainly from PKC action on AC activity (Sugden
et al., 1985b). In addition, a specific �1-AR agonist alone
increases AA-NAT mRNA and activity to a small extent
(Roseboom et al., 1996), indicating Ca2�-dependent
stimulation of Aa-nat gene transcription (may be via an
AP-1 site) and protein activation (may be via a PKC
phosphorylation site). In vitro, drugs like ionomycin and
calcimycin (A23187), which artificially raise Ca2�

i, in-
crease AA-NAT activity without elevation of cAMP and
P-CREB levels. This suggests the involvement of another
pathway in the transduction of this effect or a direct effect
of Ca2� on the enzyme (Yu et al., 1993). In contrast, a high
concentration of KCl or ouabain induces CREB phosphor-
ylation (Roseboom and Klein, 1995), but blocks the AA-
NAT response to cAMP (Parfitt et al., 1975). It is possible
that depending upon the mechanisms by which Ca2� is
mobilized in the cell, activation of transduction systems
could be specific and distinct. Similar multiple mecha-
nisms in Ca2� regulation have been observed in neurons of
the hippocampus (Bading et al., 1993).

No direct effect of cGMP analogs on the activity of the
MEL-synthesizing enzymes has been observed on either
AA-NAT (Seidel et al., 1990) or HIOMT activity (Ribe-
layga, unpublished observations). Consequently, cGMP
has no effect on the synthesis and release of MEL (Spes-
sert et al., 1992; Lin et al., 1994). However, some effects
of cGMP on pineal biochemistry have been reported.
cGMP inhibits an L-type Ca2� channel, probably
through the activation of PKG (Chik et al., 1995). Clos-
ing of this channel following cell hyperpolarization and
cGMP accumulation induced by NE is thought to partic-
ipate in membrane stability (Chik et al., 1995). The
pineal gland also displays a cGMP-sensitive cationic
channel similar to that of rod photoreceptors (Schaad et
al., 1995b). Activation of this channel by cGMP increases
Ca2�

i (Schaad et al., 1995b). More generally, cGMP is
thought to be involved in Ca2�

i homeostasis (see Mil-
bourne and Bygrave, 1995 for review) by activating
Ca2�-dependent ATPase of the endoplasmic reticulum
and inhibiting the IP3 receptor through PKG-dependent
phosphorylation. Recently, cGMP was reported to in-
duce Per1 gene expression via the MAPK pathway
(Fukuhara et al., 2002).

5. Mechanisms Involved in the Termination of Noctur-
nal Melatonin Synthesis. In the rat, irrespective of the
photoperiod, the synthesis of MEL starts to decrease
before the end of the dark phase (Tamarkin et al., 1985;
Ribelayga et al., 1999a). This diminution results from
various cellular and molecular mechanisms mainly ini-
tiated by the termination of NE release (Drijfhout et al.,

1996d). Cessation of NE release is thought to be SCN
clock-driven but also depends on local presynaptic inhi-
bition via �2-AR (Pelayo et al., 1977; Simonneaux et al.,
1994a). Termination of NAergic stimulation results in a
rapid decrease in the intracellular levels of cAMP (Klein
et al., 1978) and consequently to:

1. A large, rapid decrease in AA-NAT activity result-
ing from termination of its cAMP/PKA-dependent
protection (Fig. 5). With the decrease in cAMP lev-
els and PKA activity (Winters et al., 1977), AA-
NAT is dephosphorylated, released from the 14-3-3
protein, and then subjected to a rapid proteolysis
by the cytosolic proteasome (Gastel et al., 1998;
Ganguly et al., 2001, 2002). The decrease in AA-
NAT activity is immediately followed by a decline
in MEL synthesis and release.

2. Cessation of the nocturnal stimulation of gene ex-
pression coding for Tpoh, Aa-nat, and Hiomt. These
events, however, are without immediate effect on
the synthesis of MEL since reduction of Aa-nat and
Hiomt mRNA occurs after the decrease in MEL
levels (Roseboom et al., 1996; Ribelayga et al.,
1999a). The half-life of the mRNA is approximately
2.5 h for Aa-nat (Roseboom et al., 1996) and less
than 2 h for Hiomt (Ribelayga et al., 1999b). A
decrease in the expression of these genes at the end
of the night/beginning of the day may simply result
from termination of NAergic stimulation and a con-
secutive P-CREB dephosphorylation and/or from
accumulation of the inhibitory transcription factor
ICER (Maronde et al., 1999a). However, it should
be noted that in Crem-deficient mice Aa-nat mRNA
levels display a higher amplitude but decrease at
the same time in the late night (Foulkes et al.,
1996a).

3. Other cellular mechanisms: �1-AR are desensitized
toward the end of the night (Pangerl et al., 1990;
Freedman et al., 1995); a feedback effect of PKC on
the �1-AR-induced increase in Ca2�

i occurs (Sug-
den et al., 1988); specific phosphatases may inhibit
NE-induced cyclic nucleotide production and CREB
phosphorylation (Ho and Chik, 1995); the size of
the Aa-nat transcript decreases at night, reflecting
a reduction in the polyadenylated tail, a mecha-
nism known to decrease transcript stability and
translation efficiency (Roseboom et al., 1996); a
decrease in AA-NAT activity could also result from
a mechanism of protein thiol:disulfide interaction
(Namboodiri et al., 1981); S-adenosyl-L-homocys-
teine, which accumulates during the night, may
inhibit HIOMT activity (Tedesco et al., 1994); and
finally, reduced MEL synthesis could result from a
decrease in the quantity of its substrates.

In the rat pineal gland, proteolytic degradation of
AA-NAT resulting from termination of NE-induced
stimulation of cAMP appears as the main event respon-
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sible for ending MEL synthesis toward the end of the
night (Gastel et al., 1998). A similar mechanism has
been reported in other species (Klein et al., 1997; Scho-
merus et al., 2000), thereby suggesting that this mech-
anism is a common one shared across species.

6. Effect of Light Exposure at Night. Acute light ex-
posure at night induces a rapid and complete inhibition
of AA-NAT activity and MEL synthesis in the rat pineal
gland (Klein and Weller, 1972; Illnerova et al., 1979). A
1-min light pulse is sufficient to reduce AA-NAT activity
and MEL concentrations to daytime values within 20
min (Vanecek and Illnerova, 1979; Drijfhout et al.,
1996c). Inhibition by light can be produced by light in-
tensity as weak as 0.5 lux (Vanecek and Illnerova, 1982).

This rapid inhibitory effect of light seems rather com-
plex, as it appears to involve various sequential events
and several neural structures and pathways. Previous
electrophysiological studies have shown that light expo-
sure at night induces an evoked response in the pineal
gland (Dafny, 1980). By applying a local anesthetic in
the SCG or performing SCGx, this author has shown
that the light-induced response is composed of two com-
ponents: a rapid component going through a central
nervous pathway and a slower component transmitted
via the SCG (Dafny, 1980). The rapid component of
light-induced inhibition of AA-NAT activity could per-
haps follow a central pathway originating in the retina
and going through the IGL (a structure known to display
FOS reactivity in response to light exposure at night in
the rat; Peters et al., 1996) and deep pineal (Cipolla-
Neto et al., 1995; Bartol et al., 1997). IGL fibers contain
NPY and GABA, both of which have been shown to
inhibit NE release in vitro (GABA: Rosenstein et al.,
1990; NPY: Simonneaux et al., 1994b). However, the
transmitter(s) and mechanism(s) involved in this effect
remain hypothetical. The other component of light inhi-
bition arises from the SCN, which drives a slower, more
sustained inhibition of NE release via the SCG sympa-
thetic fibers. Even though postsynaptic inhibitory mech-
anisms exist for AA-NAT activity, it is more probable
that light-induced inhibition of MEL synthesis essen-
tially results from the very rapid termination of NE
release (t1/2 � 10 min) (Drijfhout et al., 1996c). Cessation
of NAergic stimulation induces a rapid decrease in the
intracellular concentration of cAMP and a consequent
fast (t1/2 � 2 min) degradation of AA-NAT protein by
proteasome, independent of the Aa-nat mRNA level
(Gastel et al., 1998).

It is known that light exposure at night differentially
affects the circadian clock machinery depending upon
whether it is applied in the first or the second part of the
night (Reppert and Weaver, 2001). Similarly, in the pi-
neal gland, when a 1-min light pulse is applied during
the first part of the night (before ZT 18 in rats kept in
12:12 L/D) AA-NAT activity and MEL synthesis de-
crease but increase again the same night. However, if
the light pulse is applied during the second part of the

night (after ZT 19) AA-NAT activity and MEL synthesis
remain low for the rest of the night (Illnerova and
Vanecek, 1985). We propose that the latter observation,
applying light after ZT 19, results from a clock-depen-
dent inhibition of NE release since it is possible to re-
induce Aa-nat mRNA and MEL release by injection of a
�1-AR agonist during or 1 h after the late light pulse
(Saboureau, Garidou, and Simonneaux, unpublished
data) independently of the presence of ICER (Maronde
et al., 1999a).

7. Consequences of Long-Term Noradrenergic Stimu-
lation of the Pineal Gland. The long-term (few weeks)
consequences of repeated nocturnal NAergic stimulation
of the pineal gland are observed on proteins with long
half-lives (over 24 h). This was studied in experimental
conditions that produced total suppression of pineal
NAergic stimulation (by SCGx, decentralization of the
SCG, or keeping animals in L/L) or modulated the du-
ration of NAergic stimulation (raising animals in differ-
ent photoperiods).

1. Pineal HIOMT activity is regulated in the long
term (Axelrod et al., 1965; Sugden and Klein, 1983a,b;
Ribelayga et al., 1997; Fig. 6) but this regulation de-
pends on repeated nocturnal stimulation of Hiomt gene
expression (Ribelayga et al., 1999b). The nocturnal
NAergic stimulation of Hiomt gene expression, although
having no direct effect on the nocturnal increase of
HIOMT enzyme activity, is required for the synthesis of
supplementary enzyme and to maintain constant basal
HIOMT activity. In the absence of NAergic stimulation
(for example, when animals are SCGx or raised under
L/L), the nocturnal peak of Hiomt gene expression dis-
appears but the daytime level of Hiomt mRNA is main-
tained throughout the 24 h period for up to 2 weeks
(Ribelayga et al., 1999b). In these conditions, HIOMT
activity slowly decreases down to about 50% of its initial
value within two weeks and stabilizes at this level, not
decreasing any further (Sugden and Klein, 1983a,b).
This basal value probably results from daytime synthe-
sis Hiomt gene expression (Ribelayga et al., 1999b).
When animals are exposed to an L/D cycle, the release of
NE induces a nocturnal peak of Hiomt mRNA. The in-
creased amount of mRNA over 24 h gives a higher
amount of protein, and finally the balance between pro-
tein synthesis and degradation stabilizes at the basal
HIOMT activity observed in L/D cycle (Ribelayga et al.,
1999b). To test this hypothesis, we have studied mRNA
expression and enzyme activity of HIOMT in rats raised
in different photoperiods. In accordance with our hy-
pothesis, we have observed that an increase in the du-
ration of the night results in an increase in the duration
of the nocturnal peak of Hiomt mRNA and in the mean
daily HIOMT activity (Ribelayga et al., 1999a). Interest-
ingly, when the length of the dark phase is over 12 h, the
duration of the Hiomt mRNA peak no longer increases,
nor does the mean HIOMT activity. This confirms the
correlation between quantity of nocturnal mRNA and
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mean level of HIOMT activity. These observations sug-
gest that the photoperiodic regulation of HIOMT activity
directly depends on NE-induced transcriptional mecha-
nisms (Fig. 6). Similar photoperiodic regulation of
HIOMT activity has also been suggested in European
(Ribelayga et al., 1998c) and Siberian (Ribelayga et al.,
2000) hamsters.

2. A role for ICER in the pineal gland was demon-
strated in long-term experiments (Foulkes et al., 1996b).
Duration of the nocturnal peak of Icer gene expression,
and consequently the level of ICER protein, is propor-
tional to the duration of the night with higher ICER
levels in the pineal of rats raised in SP compared to LP.
In SP, the presence of high levels of ICER at the begin-
ning of the night results in a reduction of P-CREB ac-
tivity (Foulkes et al., 1996b) and thus in cAMP-depen-
dent mRNA expression. In contrast, in LP, the lower
levels of ICER at the beginning of the night favor more
rapid induction of these mechanisms than in SP. In the
pineal gland, therefore, the photoperiodic variation in
ICER level (with higher levels in SP) may control the
photoperiodic variation in the pattern (slope of the in-
crease and amplitude) of the nocturnal expression of the
MEL-synthesizing enzymes. In support of this hypothe-
sis, we have observed that the amplitude of the noctur-
nal peak of pineal Aa-nat mRNA and activity is lower in
SP than in LP in rodents: rat (Ribelayga et al., 1999a),
Siberian hamster (Ribelayga et al., 2000), and Syrian
hamster (Garidou et al., 2003a). The role of ICER in the
modulation of genetic expression was demonstrated in
the pineal gland of Crem-deficient transgenic mice, in
which the amplitude of the Aa-nat mRNA nocturnal
peak was markedly increased (Foulkes et al., 1996a).
The ICER protein may modulate the rate and magni-
tude of MEL induction throughout the 24 h cycle. By
binding CRE in the Aa-nat promoter, ICER may modu-
late the threshold of cAMP-induced stimulation of MEL
synthesis. This threshold would be fairly stable under
typical L/D cycles but would alter under extreme photo-
periodic cycles that affect ICER protein levels (Foulkes
et al., 1996b; Li et al., 1998).

3. Sensitivity of the acute effect of NE on cAMP accu-
mulation (Klein et al., 1981b) and AA-NAT activity
(Deguchi and Axelrod, 1972b, 1973) increases 2- to 3-fold
in rats kept in L/L, SCGx, or decentralized. This occurs
gradually to reach a maximum after 7 days. This hyper-
sensitivity probably results from an increase in �1-AR
density (Kebabian et al., 1975). In contrast, the sensi-
tivity of the acute effect of NE on cGMP decreases by
about 20-fold, to reach a minimum after 7 days (Klein et
al., 1981b). Similarly, the activity of NOS decreases
gradually by 80% to reach a minimum after 8 days of
exposure of L/L or very long photoperiod (Schaad et al.,
1994; Spessert et al., 1995; Jacobs et al., 1999). The
decrease observed in L/L is prevented by daily injections
of NE (Schaad et al., 1995a). It is therefore probable that
repeated NAergic stimulation of NOS gene expression is

responsible for the maintenance of cGMP sensitivity to
NE. As expected, Spessert and Rapp (2001) also reported
that the nocturnal peak of NOS mRNA displays photo-
periodic variations (being longer in SP) leading to pho-
toperiodic changes in protein expression of NOS type I.

4. Pineal AAAD activity is twofold higher in rats kept
in L/L compared with D/D. SCGx provokes a similar
effect (Snyder et al., 1965a). These observations suggest
that NE regulates AAAD activity on a long-term basis,
although probably through different mechanisms than
those involved in the long-term regulation of HIOMT or
NOS activity

B. Noradrenergic Regulation of Melatonin Synthesis in
Other Mammalian Species

Regulation of the metabolic activity of the pineal
gland in mammals other than the rat has been less well
studied, partly because of inconvenience of use and
partly because of the relative difficulty in stimulating
MEL synthesis in some species.

1. Daily Regulation of Melatonin Synthesis
a. Daily Regulation of Melatonin Synthesis in Other

Rodents. In the Syrian hamster, the nocturnal in-
crease in MEL synthesis occurs late in the dark phase
(Rollag et al., 1980; Miguez et al., 1995a). Daytime MEL
values are approximately 0.2 ng/gland and increase up
to 2 ng/gland at ZT 21 in LP (Miguez et al., 1995a). This
nocturnal increase cannot be reproduced by acute or
repeated �1-AR stimulations during the day, but is in-
hibited by a �1-AR antagonist given at night. In addi-
tion, an acute �1-AR stimulation following a nighttime
light exposure is able to reinduce MEL synthesis (Reiter
et al., 1987). These data indicate that nocturnal stimu-
lation of MEL synthesis is gated to the nighttime by
unknown factors and results, at least partly, from an
adrenergic input (Steinlechner et al., 1984b; Reiter et
al., 1987). �1-AR potentiation of �1-AR stimulation has
been reported (Nilsson and Reiter, 1989; Santana et al.,
1989; Stankov et al., 1990b). The daily rhythm of MEL
synthesis is driven by the nocturnal increase in the
activity of AA-NAT that is, however, of a much less
amplitude than that observed in the rat. HIOMT activ-
ity (around 97 � 15 pmol/h/gland, n � 30) does not
appear to vary in the course of the 24-h period (Stein-
lechner et al., 1984a; Ribelayga and Simonneaux, un-
published observations). The nocturnal increase in AA-
NAT activity requires neo-transcription and neo-
translation (Gonzalez-Brito et al., 1990). Indeed, Aa-nat
mRNA level displays a large nocturnal increase (150-
fold) peaking at ZT 20–22 (Gauer et al., 1999). Similarly
to enzyme activity, Aa-nat mRNA could not be increased
by acute or chronic injections of adrenergic agonists
during the day but is inhibited at night following injec-
tion of a �- or �-adrenergic antagonist or to light expo-
sure (Garidou et al., 2003a). Various experiments show
that the pineal gland needs to be stimulated for at least
6 to 8 h in late afternoon to induce an increase in Aa-nat
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mRNA, AA-NAT activity, and MEL synthesis (Gonzalez-
Brito et al., 1988; Garidou et al., 2003a). The mecha-
nisms controlling MEL synthesis in the Syrian hamster,
therefore, appear somehow different to those described
in the rat AA-NAT gene transcription, enzyme activa-
tion, and MEL synthesis during the night require the
neosynthesis of a stimulatory protein (possibly tran-
scription factor) but are repressed during the day by an
inhibitory protein (possibly ICER), these processes lead-
ing to a strong gating of MEL synthesis in the late night
(Diaz et al., 2003; Garidou et al., 2003a).

In the Siberian hamster, a large increase in the syn-
thesis of MEL occurs at night (from undetectable levels
during the day up to 0.7 ng/gland at ZT 16 in LP; Stein-
lechner et al., 1995; Ribelayga et al., 2000). There is a
large nocturnal increase in AA-NAT activity (Illnerova
et al., 1984) probably induced by Aa-nat gene transcrip-
tion (Bernard et al., 1998). Light exposure or PROP
injection at night induces a significant decrease in AA-
NAT activity and MEL synthesis (Steinlechner et al.,
1984b; Lerchl, 1995; Stieglitz et al., 1995). Injections of
NE during the day stimulate AA-NAT activity and MEL
synthesis within 3 to 4 h (Steinlechner et al., 1984b).
The activity of HIOMT does not vary significantly over
24 h (Ribelayga et al., 2000). These observations indicate
that NAergic activation of Aa-nat gene transcription and
AA-NAT activity involve mechanisms similar to those
described in the rat pineal gland.

In the European hamster a daily rhythm of MEL syn-
thesis is observed throughout the year, although with
marked seasonal variation in the length and amplitude
of the nocturnal MEL peak (Pévet et al., 1989b; Vivien-
Roels et al., 1992, 1997). As for other rodent species, the
nocturnal increase in MEL synthesis depends on tran-
scriptional activation of the Aa-nat gene (Garidou et al.,
2003). The mechanisms involved in the regulation of
MEL synthesis are not known. Nocturnal injection of
PROP could partially inhibit nighttime levels of MEL.
Acute or repeated injections of adrenergic agonists dur-
ing the day, however, were not able to stimulate MEL
synthesis, but a nighttime injection of a �1-AR agonist
was able to further increase the nocturnal level of MEL
(Garidou et al., 2003). Therefore, MEL synthesis in the
European hamster pineal gland is induced by NE but
the stimulation is gated to the nighttime.

The production of MEL by the pineal gland of mice
depends on the strains (Vivien-Roels et al., 1998; von
Gall et al., 2000; Kennaway et al., 2002). Wild mice or
few wild-derived inbred strains such as CBA or C3H
produce significant amounts of MEL with a clear noc-
turnal increase, whereas most of the other inbred
strains (C57black/J6, OF1 Swiss, BALB/c) have a low or
undetectable level of pineal MEL with sometimes a very
small and transient (15 min) nocturnal peak. Interest-
ingly, MEL-deficient mice display a nocturnal peak of
MEL, although with low amplitude, when they are
raised under short photoperiod (von Gall et al., 2000).

The inability to produce MEL does not occur in the early
steps of the MEL biosynthesis pathway. NE induces
equal increases in intracellular Ca2�, P-CREB, and
ICER in the pineal gland of MEL-proficient and MEL-
deficient mice (von Gall et al., 2000). By contrast, activ-
ities of AA-NAT and HIOMT are elevated in wild or
wild-derived mice (with a nocturnal increase of AA-NAT
activity), whereas both are barely detectable in most
other strains (Ebihara et al., 1987). In the C57black
strain the Aa-nat gene was reported to include a 102-bp
pseudoexon bearing a stop codon and giving rise to a
severely truncated AA-NAT protein unable to synthesize
MEL (Roseboom et al., 1998). Since most strains of mice
display a clear day/night variation in Aa-nat gene tran-
scription (Foulkes et al., 1996a; Roseboom et al., 1998),
they may be used to study the regulation of Aa-nat
transcription in a genetically modified mice model.

In contrast to the above-mentioned rodents, Arvican-
this ansorgei is a diurnal rodent (Challet et al., 2002). It
was of interest therefore to check whether MEL synthe-
sis in this species was similar to that observed in noc-
turnal rodents (Garidou et al., 2002). There is a marked
increase (100-fold) in Aa-nat mRNA, which precedes
that of AA-NAT activity and MEL by 2 h, both peaking
7 h after dark onset. These increases are partly repro-
duced by a daytime injection of a �1-AR agonist. Toward
the end of the night the decline of AA-NAT activity and
MEL precedes that of Aa-nat mRNA, suggesting post-
translational inhibition, as reported for the rat (Gastel
et al., 1998). This is confirmed by the observation that
2 h after a nighttime injection of a �1-AR antagonist the
levels of AA-NAT activity and MEL content are reduced
to daytime values, while Aa-nat mRNA levels are barely
affected. Therefore, we found no fundamental differ-
ences between the nocturnal Wistar rat and diurnal
Arvicanthis ansorgei in the mechanisms involved in NE-
induced nocturnal stimulation of MEL synthesis.

b. Daily Regulation of Melatonin Synthesis in Nonro-
dents. In the sheep, stimulation of MEL synthesis de-
pends on activation of a �1-AR/cAMP/AA-NAT pathway
(Morgan et al., 1988; Ravault et al., 1996). The role of
�1-AR stimulation has been discussed (Sugden et al.,
1985a; Morgan et al., 1988; van Camp et al., 1991; How-
ell and Morgan, 1991). HIOMT activity (Namboodiri et
al., 1985a,b) and Hiomt mRNA (Privat et al., 1999) do
not vary significantly over the course of the daily 24 h
cycle. Synthesis of MEL requires mainly translational
and post-translational mechanisms. The level of Aa-nat
mRNA is quite high during the day and increases by
only 50% at night, whereas AA-NAT protein, enzyme
activity, and MEL content are all low during the day and
increase up to 10-fold during the night (Namboodiri et
al., 1985a,b; Coon et al., 1995; Klein et al., 1997; Privat
et al., 1999). Therefore, AA-NAT activation by cAMP
requires synthesis of AA-NAT protein without de novo
Aa-nat mRNA transcription (Klein et al., 1997). The
high level of Aa-nat mRNA at the beginning of the night
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results in a very fast increase (within a few minutes) in
MEL synthesis immediately after the onset of darkness
(Ravault et al., 1996; Ravault and Chesneau, 1999). It is
probable that proteasome proteolysis is an important
mechanism involved in the regulation of AA-NAT activ-
ity (see below for the cow).

In the cow, MEL synthesis occurs rapidly following
onset of night (Hedlund et al., 1977). In vitro experi-
ments showed that a �1-AR stimulation elevates cAMP
level, activates AA-NAY via a type II PKA, and increases
MEL release (Ruppel and Olcese, 1991; Maronde et al.,
1997; Schomerus et al., 2002). �1-AR stimulation in-
creases the intracellular level of Ca2� in most pinealo-
cytes but does not potentiate the �1-AR-induced increase
in cAMP level, AA-NAT activity, and MEL synthesis
(Ruppel and Olcese, 1991; Schomerus et al., 2002). In-
crease in AA-NAT activity is blocked by puromycin, but
not by actinomycin D (Chang and Ebadi, 1980). Regula-
tion of AA-NAT activity was therefore proposed to result
from translational and post-translational mechanisms,
which was thereafter confirmed (Schomerus et al.,
2000). Following cloning of the gene coding for bovine
AA-NAT, it was shown that pineal Aa-nat mRNA levels
are high both during the day and night with only a small
increase at night (Craft et al., 1999). Recently, it was
proposed that during the day, in the absence of cAMP,
AA-NAT protein is constantly translated but instantly
degraded by proteosomal proteolysis; in contrast, during
the night, �1-AR activation increases the levels of cAMP
and PKA activity which, in turn, protects the protein
from degradation and thereby enhances AA-NAT activ-
ity (Schomerus et al., 2000).

In humans and monkeys limited studies suggest a
“sheep-like” regulation. There is an immediate increase
in circulating melatonin at the onset of darkness (Rep-
pert et al., 1979; Arendt, 1995). In rhesus monkey and
human, the quantity of Aa-nat mRNA is high and dis-
plays no daily variations, while the enzyme activity in-
creases by up to 10-fold at night (Coon et al., 1996, 2002).
The mean daily level of pineal HIOMT activity is about
4.3 � 0.1 nmol/h/mg protein in human (Bernard et al.,
1995) and about 9 nmol/h/mg protein in rhesus monkey
(Coon et al., 2002) with no significant day/night varia-
tion. Daytime �1-AR stimulation does not stimulate
MEL synthesis (Berlin et al., 1995), but its nocturnal
synthesis can be inhibited by a �1-AR antagonist (Cowen
et al., 1985). In humans, there is a large interindividual
variability in the daily pattern of MEL synthesis, which
also varies depending on age (Baskett et al., 2001).

c. Conclusions. Studies performed so far in different
mammalian models show that the nocturnal increase in
MEL synthesis is primarily triggered by an increase in
AA-NAT activity resulting from accumulation of the AA-
NAT protein itself. Nevertheless, fundamental differ-
ences in the mechanisms involved in the accumulation of
stable and active AA-NAT molecules exist (Fig. 7). Two
groups of mammals can be distinguished: first, the ro-

dent species (“rat type”), in which an increase in the
expression of the Aa-nat gene and synthesis of new
AA-NAT molecules are a requirement, and secondly the
nonrodent species (“sheep-type”), in which Aa-nat
mRNA is constitutively present at a high level and AA-
NAT protein accumulation results basically from stabi-
lization of the constantly translated protein. These dif-
ferent mechanisms are responsible for the different
patterns of MEL synthesis and secretion observed be-
tween the two groups (see Klein et al., 1997; Stehle et
al., 2001 for reviews) with a long delay (several hours)
from dark onset to MEL onset in rodents and a very
short delay (a few minutes) from dark onset to MEL
onset in nonrodents.

Unfortunately, there have been far fewer biochemical
and molecular studies performed in the above species
compared to the rat. Analyses of these findings, how-
ever, show that, although NE is probably an important
neurotransmitter regulating daily MEL synthesis, most
of these species are not fully responsive to NE, suggest-
ing the involvement of other transmitters to obtain a full
MEL response.

2. Seasonal Variations in Melatonin Synthesis
a. Variations in the Duration of the Nocturnal Mela-

tonin Peak. In most mammalian species studied so far,
an increase in the duration of the dark phase results in
a lengthening of the duration of the nocturnal MEL peak
up to a maximum, which differs according to species. In
addition, the characteristics of the lengthening of the
nocturnal peak are different according to species (see
Pévet et al., 1991; Reiter, 1993; Pévet and Pitrosky, 1997
for reviews). For example, in the rat at the beginning of
the night, the time between dark onset and MEL onset
increases when the night duration lengthens, whereas
at the end of the night the decline in MEL secretion
occurs shortly before light onset (initiated by the circa-
dian clock), irrespective of the photoperiod (Illnerova
and Vanecek, 1980). This MEL rhythm is driven by
photoperiodic variations in the duration of the nocturnal
peak of Aa-nat mRNA and activity (Illnerova and
Vanecek, 1980; Illnerova, 1986; Ribelayga et al., 1999a).
The consequence of this regulation is an increase in the
duration of the nocturnal MEL peak until it reaches a
maximum, after which lengthening the night results in
no further increase in the MEL peak duration. In the
Siberian hamster, photoperiodic regulation of AA-NAT
activity and MEL synthesis is similar to that of the rat
except that the decrease in MEL release at the end of the
night is initiated by morning light in LP and probably by
the circadian clock in SP (Illnerova et al., 1984). In the
Syrian hamster, the increase in MEL synthesis at the
beginning of the night occurs after dark onset with the
same delay whatever the photoperiod. The decline in
MEL production at the end of the night is initiated by
the light in LP and probably by the circadian clock in SP
(Skene et al., 1987; Miguez et al., 1995a). In the Euro-
pean hamster, in contrast to the rat, the delay between
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dark onset and MEL onset is shorter when the night
duration lengthens. As in other photoperiodic species,
the decrease in MEL synthesis and release at the end of
the night is initiated by light when animals are kept in
LP. Such regulation results in large photoperiodic vari-
ations in MEL duration (Vivien-Roels et al., 1997; Gari-
dou et al., 2003b).

b. Variations in the Amplitude of the Nocturnal Mel-
atonin Peak. In addition to photoperiodic variations in
the duration of the nocturnal MEL peak, a seasonal
variation in the amplitude of this peak is also observed
in certain species. In the European hamster, raised in
natural conditions, the daily rhythms in MEL and 5-ML
synthesis display marked seasonal variations. The am-
plitude of the nocturnal MEL peak is high from Septem-
ber to April (with a maximum of 10-fold nocturnal in-
crease around November/December) and very low
during the summer (with a minimum of a 1.5-fold in-
crease in June; Vivien-Roels et al., 1992, 1997). Inter-
estingly, this photoperiodic variation in MEL peak am-
plitude is driven by Aa-nat mRNA and AA-NAT activity
levels (Garidou et al., 2003b). Similarly, the diurnal
levels of 5-ML are the highest in autumn/winter (Vivien-

Roels et al., 1992). In addition, we have observed a
seasonal variation in HIOMT activity, with an increase
in late autumn associated with an increase in MEL and
5-ML synthesis, suggesting that this enzyme is also
involved in the seasonal regulation of pineal metabolism
in the European hamster (Ribelayga et al., 1998c). Un-
derstanding the underlying mechanisms involved in this
seasonal regulation is difficult because this species is
endowed with an endogenous circannual clock (Masson-
Pévet et al., 1994b; Saboureau et al., 1999), and the
amount of MEL synthesis appears to be modulated by
the external temperature, with lower temperature in-
creasing the MEL peak amplitude (Vivien-Roels et al.,
1997). Interestingly, we observed that administration of
a �-adrenergic agonist during the night in LP augments
the low nocturnal level of MEL up to values observed at
night in SP (Garidou et al., 2003b). This suggests that
the low amplitude of the MEL peak in LP results from a
weaker NEergic input from the circadian clock toward
the pineal gland. In the Siberian hamster, several stud-
ies have reported that the amplitude of the nocturnal
MEL peak is 2-fold higher in animals raised in SP than
in LP (Illnerova et al., 1984; Hoffmann et al., 1985;

FIG. 7. Schematic representation of the two types of regulation of AA-NAT activity described in the mammalian pineal gland. In the pineal gland
of all mammals studied to date, AA-NAT activity increases during the night as a result of the nocturnal adrenergic stimulation. However, two groups
of mammals can be distinguished on the basis of the molecular mechanisms leading to stimulation of AA-NAT activity. In a group comprising many
rodent species, the nocturnal increase in AA-NAT activity results firstly from the cAMP/PKA-dependent stimulation of Aa-nat gene expression
(100–150-fold) with the subsequent synthesis of new molecules of AA-NAT. Additionally, cAMP/PKA phosphorylates AA-NAT, which allows its
interaction with a chaperone protein 14-3-3 and inhibits proteasomal proteolysis of the AA-NAT molecules. During the day, AA-NAT activity is
relatively low because of the low basal expression of the Aa-nat gene and low levels of the proteolysis inhibitor. In a second group of mammals including
ungulates (e.g., sheep, cattle) and apes, the Aa-nat gene is constitutively expressed and the level of Aa-nat mRNA displays small (if any) daily
variations. However, even though Aa-nat mRNA is continuously translated, the AA-NAT protein only accumulates during the night when NE-induced
accumulation of cAMP prevents proteasomal proteolysis of AA-NAT molecules. In addition, cAMP/PKA activates AA-NAT following phosphorylation
and interaction with the 14-3-3 proteins. The presence of a readily available pool of Aa-nat mRNA at the beginning of the night accounts for the rapid
increase in MEL synthesis immediately after lights-off. During the day, in the absence of cAMP, the AA-NAT molecules are continuously lysed as soon
as they are synthesized, thus accounting for the low daytime level of AA-NAT activity.
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Lerchl and Schlatt, 1992; Miguez et al., 1996; Ribelayga
et al., 2000) and in winter compared to summer (Stein-
lechner et al., 1995). These variations do not result from
an increase in the amplitude of the peak of AA-NAT
activity since, in contrast, this amplitude is about 2-fold
lower in SP compared to LP (Hoffmann, 1981; Illnerova
et al., 1984; Ribelayga et al., 2000). Similar observations
have also been made in natural conditions, an annual
rhythm in the amplitude of the nocturnal AA-NAT ac-
tivity peak has been demonstrated with a maximum in
summer and a minimum in winter (Steinlechner et al.,
1987). In contrast to AA-NAT activity, the mean daily
level of HIOMT activity is about 2-fold higher under SP
compared to LP, without modification of the enzyme
affinity for its substrates, indicating that this increase
results from an increase in the amount of protein (Ribe-
layga et al., 2000). These results demonstrate that in
some photoperiodic species, photoperiodic variations in
HIOMT activity drive the photoperiodic variations in
the amplitude of the nocturnal MEL peak. Studies have
now to be performed to understand the mechanisms
involved in the photoperiodic regulation of HIOMT and
its role in the seasonal regulation of MEL.

c. Conclusions. Physiologically, the seasonal varia-
tions in MEL synthesis and release confer the major
function of the mammalian pineal gland that is to syn-
chronize annual functions with seasons. However, while
the basic mechanisms involved in the daily regulation of
MEL synthesis have been actively investigated, espe-
cially in the (nonphotoperiodic) rat, the mechanisms un-
derlying the photoperiodic/seasonal variations in MEL
synthesis are less well known. In most photoperiodic
species it is clear that NE alone is not sufficient to fully
stimulate MEL synthesis, thus revealing an important
role for other pineal transmitters. Although photoperi-
odic regulation of MEL synthesis is probably primarily
driven by photoperiodic alterations in the hypothalamic
SCN clock activity, further studies are clearly needed to
elucidate the photoperiodic regulation of NE and other
neurotransmitters that allow decoding of the photoperi-
odic message by the pineal gland.

C. Conclusion: Both AA-NAT and HIOMT Shape the
Daily and Seasonal Profiles in Melatonin Synthesis

In the pineal gland of most mammals, the nocturnal
increase in MEL synthesis and release is primarily
driven by AA-NAT activity. Studies on the regulation of
this enzyme in the rat have shown that the release of NE
at the beginning of the night activates both �1- and
�1-AR, resulting in a large increase in the intracellular
levels of cAMP and PKA-induced phosphorylation of
CREB into P-CREB. The latter transcription factor is
thought to induce (at least partly) a massive expression
(�150) of the gene coding for AA-NAT. The enzyme,
rapidly synthesized/activated (�50–70), catalyzes the
synthesis of MEL from 5-HT. NAergic stimulation also
induces, but to a lesser degree, the expression of genes

coding for TPOH (�1.5) and HIOMT (�2), and other
transcription factors that do not appear to be involved in
the nocturnal stimulation of MEL synthesis but rather
in the modulation of this stimulation. Cessation of NE
release at the end of the night or following a light expo-
sure results in a rapid decrease in cAMP levels followed
by post-translational inhibition of AA-NAT activity (de-
stabilization/proteolysis). In nonrodent species, noctur-
nal increase in the synthesis of MEL appears to depend
mainly on post-translational mechanisms (see Klein et
al., 1997; Stehle et al., 2001 for reviews). The high level
of Aa-nat mRNA throughout the 24-h cycle allows a
sustained synthesis of AA-NAT protein that is rapidly
degraded by proteasome proteolysis during the day,
whereas at night NE-induced cAMP accumulation inhib-
its AA-NAT proteolysis and allows rapid enzyme activa-
tion and MEL synthesis.

Besides Aa-nat, Hiomt mRNA is also regulated every
night by the NE input, but with a different effect of time
on HIOMT activity, due to the much higher stability of
HIOMT protein compared to AA-NAT. Consequently,
HIOMT activity displays a significant photoperiodic/sea-
sonal variation in the pineal gland of several rodent
species, with a higher activity under longer nights (Ri-
belayga et al., 1998c, 1999a, 2000). As shown in the
Siberian hamster, HIOMT activity may be the limiting
factor for the rate of MEL synthesis at night, and there-
fore the photoperiodic variation in HIOMT activity may
drive the photoperiodic variation in the amplitude of the
MEL peak.

We therefore propose that AA-NAT and HIOMT are
both involved in the regulation of the MEL message but
with rather different functions (Fig. 8): AA-NAT switch-
ing MEL synthesis on and off (with photoperiodic vari-
ations in duration) and HIOMT tuning the amplitude of
this nocturnal MEL synthesis (with photoperiodic vari-
ation in magnitude).

VI. Regulation of Melatonin synthesis in the
Mammalian Pineal Gland by Other Transmitters

The function of the pineal hormone MEL is unusual
because it depends on the pattern of its secretion (name-
ly the duration and amplitude of the nocturnal peak, and
coincidence of this secretion with target sensitivity).
This is why regulation of its synthesis and release prob-
ably requires a complex control, as the presence of many
transmitters and their receptors in the pineal gland
suggests.

While, as summarized above (see Section V), the pres-
ence of NAergic fibers, as well as the role and mecha-
nisms of action of NE, have been well studied for more
than 30 years, the role of the other pineal transmitters is
now emerging.

In 1984, Ebadi began his review on the regulation of
MEL synthesis by writing that “a pinealogist should
view a pinealocyte as containing numerous and cascad-
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ing groups of receptor sites, one of which is a �-adren-
ergic site (. . . ), view the pinealocyte as containing and
orchestrating the functions of numerous neurotransmit-
ters, one of which is norepinephrine (. . . ), remain cog-
nizant of the remarkable species-directed specificity of
the mammalian pineal gland in synthesizing MEL.” Sev-
enteen years later, this introduction to the control of
MEL production in mammals remains truer than ever.

A. Peptidergic Regulation of Melatonin Synthesis

Pévet (1981, 1983b, 1986) was one of the first authors
to point out the large variety of peptides contained in the
mammalian pineal gland. Before this, studies had fo-
cused on the search for a specific pineal peptide with
antigonadotropic properties. In the early 1980s, the hy-
pothesis that pineal metabolic activity may be regulated
by peptides was introduced. Since then, several research
groups have been seeking to determine the origin, sites
of action, effects, and physiological roles of the (neu-
ro)peptides in the mammalian pineal gland.

The mammalian pineal gland contains a great diver-
sity of peptides of different origins (Pévet, 1983b): ner-
vous fibers (neuropeptides) of sympathetic, central, or
parasympathetic origin; systemic circulation (peptider-
gic hormones); and cells of the pineal itself releasing
peptides with autocrine/paracrine effects. Studies on pi-
neal peptides and their relation to MEL synthesis have
been the object of previous reviews (Vaughan, 1984;
Pévet, 1986; Ebadi et al., 1989; Møller et al., 1991b;

Møller, 1994, 1999; Simonneaux, 1995; Simonneaux et
al., 1996b; Simonneaux and Pévet, 1998). Since then, a
lot of experimental data have come to support the hy-
pothesis of a significant physiological role of peptidergic
regulation on mammalian pineal metabolism.

1. Vasoactive Intestinal Peptide, Pituitary Adenylate
Cyclase Activating Peptide, and Histidine Isoleucine
Peptide. The neuropeptides VIP, PHI, and PACAP be-
long to the VIP/secretin/glucagon family and display a
remarkable amino acid sequence homology because they
originate from a single ancestral molecule, probably
PACAP itself (see Sherwood et al., 2000; Vaudry et al.,
2000 for reviews). VIP is a 28-amino acid peptide, iso-
lated for the first time by Said and Mutt in 1970 from the
porcine gut, and then identified in many central (espe-
cially in the cortex, hippocampus, hypothalamic nuclei,
amygdala) and peripheral nervous structures. PHI is a
27-amino acid peptide, originating from the VIP precur-
sor-coding gene, which was isolated in 1980 by Tatemoto
and Mutt. PACAP is a 38-amino acid peptide that oc-
curs, although to a lesser extent, in a shorter form of a
27-amino acid peptide curtailed in position C-terminal.
It was isolated for the first time by Miyata et al. (1989)
from the sheep hypothalamus and further described as
an important neuropeptide of the central nervous sys-
tem and peripheral organs. It is particularly abundant
in the adrenal gland, testis, pituitary, and various brain
regions such as the thalamic and hypothalamic nuclei,
lateral septum, and dorsal raphe nuclei.

VIP is involved in vaso- and bronco-dilation, in the
regulation of the synthesis and secretion of several hor-
mones (prolactin and growth hormone) and body fluids
(saliva), in neuronal growth and survival, in neurotrans-
mission, and in immunity (Said, 1991; Nussdorfer and
Malendowicz, 1998). PACAP exerts pleiotropic func-
tions: it is involved in cell survival, differentiation, pro-
liferation and apoptosis, in spermatogenesis, in the reg-
ulation of synthesis and release of various hormones
(from the pituitary, adrenal gland, pancreas) and in
neurotransmission (Rawlings and Hezareh, 1996; Sher-
wood et al., 2000; Vaudry et al., 2000). Recent data have
shown that both peptides are involved in the regulation
and the expression of circadian rhythms. VIP is present
in the SCN neurons with a day/night variation in its
content and may be part of the endogenous clock output
(Ibata et al., 1989; Shinohara et al., 1994). Since the type
2 VIP/PACAP (VPAC2-R) is also expressed in the SCN,
VIP may also exert phase-resetting properties (Piggins
et al., 1995; Reed et al., 2001). PACAP also recently
appeared as an important neurotransmitter of the cir-
cadian system (Hannibal et al., 1997, 2000, 2001; Kopp
et al., 1997). It is present in the RHT, colocalized with
Glu, and is able to induce phase-shifting of the circadian
clock either during the subjective day or subjective night
using cAMP-dependent or Ca2�-dependent mechanisms,
respectively (Hannibal et al., 1997; Harrington et al.,
1999; Kopp et al., 1999). Finally, we report below that

FIG. 8. Schematic representation of the different roles of AA-NAT and
HIOMT in the daily and photoperiodic regulation of MEL synthesis. The
marked onset of AA-NAT activity at the beginning of the night and its
offset later in the night drives the duration of the nocturnal MEL peak,
whereas photoperiodic variations of HIOMT activity, with lower values
under LP, drives the amplitude of the nocturnal MEL peak. This func-
tional hypothesis is to be adapted according to species (drawing from F.
Revel, unpublished report).
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these peptides are involved in the regulation of pineal
MEL synthesis and release.

The pineal gland of all mammalian species studied so
far contains a VIPergic innervation (see Cozzi, 1999 for
review). The species studied include rabbit, cat and pig
(Uddman et al., 1980), rat (Mikkelsen et al., 1987), gerbil
(Møller et al., 1985; Shiotani et al., 1986), sheep (Cozzi et
al., 1990), and mouse (Mikkelsen et al., 1994). The con-
centration of VIP in the rat pineal gland is 17 pmol/g
(Møller and Mikkelsen, 1989). SCGx does not alter VI-
Pergic innervation in the pineal gland of the rat (Møller
and Mikkelsen, 1989; Piszczkiewicz and Zigmond, 1992)
and sheep (Cozzi et al., 1994), indicating that the VIP
fibers are of extra-sympathetic origin. Shiotani et al.
(1986) have demonstrated, in the gerbil, that the VIP
fibers originate from the parasympathetic pterygopala-
tine ganglia. In addition, some VIP fibers may originate
from central structures that project to the pineal gland
(Møller et al., 1985) or from the trigeminal ganglia (in
the sheep, Cozzi, 1999). VIPergic fibers of parasympa-
thetic origin enter the pineal gland through the pial
capsule, travel within the gland following the blood ves-
sels, and end among clusters of pinealocytes; central
VIPergic fibers enter via the deep pineal gland. Some
VIPergic nerve endings are found in the perivascular
space, which suggests a vasorelaxant effect on pineal
blood flow (Nilsson, 1994). In sheep, VIPergic fibers con-
tain the neuronal type NOS (Lopez-Figueroa and Møller,
1996; Lopez-Figueroa et al., 1996). In some parasympa-
thetic structures, NO can regulate neurotransmitter re-
lease (Modin et al., 1994). In the rat, the presence of
NOS-containing fibers has not been demonstrated but it
is suggested by the report of colocalization of NOS with
VIP and PHI in the pterygopalatine ganglia (Ceccatelli
et al., 1994). PHI is present in the VIPergic fibers inner-
vating the pineal gland of the rat (Møller and Mikkelsen,
1989), sheep (Cozzi et al., 1994), and mouse (Mikkelsen
et al., 1994). PACAP is present in structures whose
neurons project to the pineal gland (PVN: Masuo et al.,
1993; SCG: Klimaschewski et al., 1996a; trigeminal gan-
glia: Møller et al., 1993, 1999). PACAPergic fibers were
observed in the pineal gland of rat (Liu and Møller,
2000), sheep (Liu et al., 2000), and pig (Nowicki et al.,
2002). They originate from the trigeminal ganglia and
reach the pineal gland via the conarian nerve (Liu and
Møller, 2000; Liu et al., 2000).

VIP and PACAP have a similar structure, with 68% of
homology. VIP was the first and most studied neuropep-
tide in the pineal gland. VIP increases the intracellular
levels (Kaneko et al., 1980; Yuwiler, 1983a; Simonneaux
et al., 1997b) and efflux (Rekasi et al., 1998) of cAMP
and therefore activates all cAMP-related events: phos-
phorylation of CREB (Roseboom and Klein, 1995; Scho-
merus et al., 1996), increase in Aa-nat gene expression
(Roseboom et al., 1996; Rekasi and Czompoly, 2002),
activation of AA-NAT activity in vitro (Kaneko et al.,
1980; Yuwiler, 1983a) and in vivo (Schröder et al., 1989),

stimulation of the synthesis and release of 5-HT proba-
bly following TPOH activation (Simonneaux et al.,
1997c), long-term activation of HIOMT (Ribelayga et al.,
1997), and stimulation of MEL release (Simonneaux et
al., 1990c, 1993). These effects, however, are always
lower than what has been reported following �-AR stim-
ulation. Surprisingly, VIP has also been reported to in-
crease cGMP levels (Ho et al., 1987b) by NO-dependent
mechanisms (Spessert, 1993) and the influx of extracel-
lular Ca2� through cGMP-sensitive Ca2� channels
(Schaad et al., 1995b). It should be noted, however, that
other authors have not observed an effect of VIP on
Ca2�

i (Olcese et al., 1996; Schomerus et al., 1996). The
stimulatory effect of VIP on cAMP, cGMP, and AA-NAT
is potentiated by �1-AR agonists (Ho et al., 1987b; Yu-
wiler, 1987; Chik et al., 1988). However, it has been
suggested that, in addition to its postsynaptic effects on
pinealocytes, VIP may stimulate TH activity in the sym-
pathetic nerve endings (Schwarzschild and Zigmond,
1991). A study comparing the effects of VIP and ISO on
the same culture of rat pinealocytes has shown that VIP
is very effective in stimulating MEL synthesis (EC50 �
0.11 nM), but that at optimal doses (1 to 10 nM) its effect
is approximately 2 to 3 times lower than that induced by
optimal doses (1 to 10 �M) of a �1-AR agonist (Simon-
neaux et al., 1993). These observations are reinforced by
the data of Schomerus et al. (1996) showing that VIP
induces CREB phosphorylation in 50 to 60% of cultured
pinealocytes whereas NE induces it in 95% of pinealo-
cytes. It appears, therefore, that only about half of the
rat pinealocytes are endowed with VIP binding sites,
while nearly all contain �1-AR. The publication of a
study in 1993 showing the presence of PACAP in the rat
pineal gland (Masuo et al., 1993) led us to study the
effect of this peptide. PACAP stimulates the synthesis
and release of MEL by cultured rat pinealocytes with a
high affinity (EC50 � 0.14 nM) similar to that of VIP
(Simonneaux et al., 1993). PACAP, like VIP, increases
CREB phosphorylation (Schomerus et al., 1996), cAMP
accumulation (Chik and Ho, 1995; Simonneaux et al.,
1997b), Aa-nat gene expression (Rekasi and Czompoly,
2002), AA-NAT activity (Yuwiler et al., 1995), 5-HT syn-
thesis (Simonneaux et al., 1997c), and the long-term
activity of HIOMT (Ribelayga et al., 1997). Intensity of
these PACAP effects is similar to that of VIP (thus lower
than reported following NE stimulation). The effect of
PACAP on cAMP and AA-NAT may be potentiated by
�1-AR stimulation (Chik and Ho, 1995; Yuwiler et al.,
1995). PACAP increases the concentration of Ca2�

i (Ol-
cese et al., 1996; Simonneaux, unpublished observa-
tions, but see Schomerus et al., 1996). Interestingly,
PACAP, in contrast to VIP, does not stimulate cGMP
accumulation in the rat pineal gland (Chik and Ho,
1995).

The reported qualitative and quantitative similarities
between VIP and PACAP prompted us to investigate
whether these two peptides act on similar or different
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receptors. There are three types of receptors for VIP and
PACAP (IUPHAR nomenclature: Harmar et al., 1998):
the PACAP specific receptor (PAC1-R) displays a higher
affinity (100 to 1000 times) for PACAP than for VIP;
VIP1/PACAP (VPAC1-R) and VIP2/PACAP (VPAC2-R)
receptors show a similar affinity for VIP and PACAP.
The PAC1-R is coded by a gene that may be expressed
under six different splice variants (with or without dif-
ferent combinations of two cassettes of 81 (hop1 or hop2)
and 88 (hip) nucleotides) (Spengler et al., 1993). In ad-
dition, a very short form (amputated of 21 amino acids in
the extracellular N-terminal portion of the protein) has
been observed (Pantaloni et al., 1996). All PAC1-R vari-
ants activate AC with equal potency but induce PLC
activity to varying degrees according to the splice vari-
ant. Finally, an eighth variant of PAC1-R with amino
acid substitutions and deletions in the second and fourth
transmembrane domains (PAC1-R-TM4) has been
cloned and reported to affect an L-type Ca2�-channel
with no effect on AC and PLC activities (Chatterjee et
al., 1996). VPAC1-R and VPAC2-R are coded by two
different genes (VPAC1-R: Ishihara et al., 1992;
VPAC2-R: Lutz et al., 1993) without known alternative
splicing; they mainly differentiate by their relative af-
finities for secretin (lower for VPAC2-R). Activation of
these receptors always induces an increase in cAMP
levels. Originally activation of these receptors was
thought not to affect the IP3/PLC system; however, there
are a few examples where the VPAC-R might increase
inositol phosphate production or affect Ca2� levels.

In 1983, Kaku et al. reported the presence of VIP
binding sites in the rat pineal gland. However, recent
data on the effects of PACAP in the pineal gland, the
existence of several types of VIP/PACAP receptors, and
the development of specific agonists/antagonists for
these receptors (Gourlet et al., 1997a,b,c) have allowed
us to characterize the nature of the binding sites of these
peptides in the rat pineal gland. We have demonstrated
by ligand binding experiments, RT-PCR analysis, phar-
macological, and biochemical analyses that VIP and
PACAP bind equally to the VPAC1-R to stimulate the
MEL synthesis via a cAMP-dependent mechanism (Si-
monneaux et al., 1997b). The presence of PAC1-R in the
rat pineal gland is being questioned since we observed
by RT-PCR that the short and hop splice variants of
PAC1-R are expressed in the rat pineal gland (Simon-
neaux et al., 1997b) but no specific labeling for the gene
coding for PAC1-R was observed by ISH in the rat pineal
gland (Hashimoto et al., 1996). Nevertheless, if the
PAC1-R is present and functional in the rat pineal gland,
it does not appear to be involved in the stimulation of
MEL synthesis. On the one hand, the stimulatory effects
of VIP and PACAP on MEL synthesis are not additive,
and on the other hand a VPAC1-R antagonist inhibits
the effect of VIP (EC50 approximately 19 nM) and
PACAP (EC50 approximately 37 nM) with a similar af-
finity on MEL secretion (Simonneaux et al., 1997b). The

PAC1-R, if expressed in the pineal gland, could regulate
other functions, for example blood pressure (Nilsson,
1994) or the synthesis and release of NE and NPY from
nerve terminals (May and Braas, 1995). The role of
PAC1-R is therefore still to be established in the pineal
gland. In addition, it will be necessary first to define
whether VIP and PACAP display different effects on
Ca2�

i; secondly to establish whether PACAP, but not
VIP, increases IP3, this effect being specific to PAC1-R;
and thirdly to define whether the effect of VIP on cGMP,
not observed with PACAP (Chik and Ho, 1995), is a
phenomenon induced by VPAC1-R or by another type of
VIP receptor.

The rat pineal gland contains two other peptides be-
longing to the same family: helodermin and PHI. Helo-
dermin increases cAMP levels and AA-NAT activity sim-
ilarly to VIP (EC50 � 1 nM) and it is possible that it acts
on VIP receptors known to display a high affinity for
helodermin (Kaku et al., 1992). PHI stimulates AA-NAT
activity and MEL synthesis similarly to VIP (Moujir et
al., 1992). Binding sites for PHI have been described in
the rat pineal gland (Tsuchiya et al., 1987); however, it
is very probable that PHI also binds VIP receptors (Sh-
erwood et al., 2000).

The presence, sites of action, and effects of these pep-
tides have been poorly studied in other mammalian spe-
cies. VIP stimulates MEL synthesis in the sheep (Mor-
gan et al., 1988) but not in the Syrian hamster (Moujir et
al., 1992). Contradictory data were reported in the bo-
vine pineal gland since high-affinity VIP binding sites
(KD � 5 nM) (Samejima et al., 1993) but no mRNA
coding for PAC1-R (Olcese et al., 1996) were reported,
whereas PACAP, but not VIP, was found to slightly
increase cAMP level, AA-NAT activity, and MEL release
in cultured bovine pineal cells (Schomerus et al., 2002).

The presence of VIP and PACAP in the pineal gland of
mammals and the demonstration in the rat of their
powerful stimulatory effect on the cAMP/AA-NAT/MEL
pathway via the activation of VPAC1-R (Fig. 9A) sug-
gests that they are important neuromodulators of MEL
synthesis. Their maximal stimulation of MEL release in
vitro is always 2 to 5 times lower than that obtained
after maximal NAergic stimulation. However, optimal
VIP (or PACAP) concentrations are able to further in-
crease MEL release induced by suboptimal concentra-
tions of ISO (Simonneaux et al., 1997b; Fig. 9B). This
observation is of special interest since the VIP content of
the rat pineal gland displays a 3-fold nocturnal increase
(Kaku et al., 1986; Fig. 9C). In addition, the effect of VIP
is modulated by light (Yuwiler, 1983b; Kaku et al.,
1985), suggesting a role for VIP in the transmission of
photic information to the pineal gland. The content of
PACAP in the rat pineal gland increases 2-fold at night
(Fukuhara et al., 1998), although this is controversial
(Møller et al., 1999). The occurrence of seasonal varia-
tions in pineal VIP or PACAP content has not been
reported to date.
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The above observations show that VIP and PACAP
are present in nerve fibers of the pineal gland, display
daily variations, directly stimulate, and further increase
�1-AR stimulation of MEL synthesis with alterations
depending on the light environment. These findings
strongly suggest their involvement in the nocturnal se-
cretion of MEL, although experimental models still have
to be designed to test this hypothesis.

2. Neuropeptide Y. NPY is a 36-amino acid peptide
rich in tyrosine. It was isolated for the first time by
Tatemoto et al. (1982) from porcine brain. It was later
described as one of the neuropeptides whose concentra-
tion is the highest in the central and peripheral nervous
system (see Larhammar, 1996; Malendowicz et al., 1996
for review). It is present in the limbic structures, cortex,
hypothalamus, cerebral trunk, spinal cord, and vascular
bed of many organs. NPY belongs to the pancreatic
polypeptide family (NPY, YY peptide (PYY), and pancre-
atic peptide (PP)), all members with a large number of Y
residues including both ends of the molecule, sharing a
high amino acid homology, and characterized by a hair-
pin tertiary structure. However, while NPY acts as a
neurotransmitter, PYY (mainly present in the intestine
endocrine cells) and PP (mainly present in pancreatic
cells) act as hormones. NPY is often associated with the
sympathetic nervous system, where it is colocalized with
NE, but it is also present in neurons of the central

nervous system. Two main functions are attributed to
NPY: 1) regulation of NAergic transmission pre and
postsynaptically (especially in the vascular system of
various organs, where it has a vasoconstrictor effect);
and 2) control of food intake, since it appears to be a
powerful stimulator of food and water intake. It is also
involved in the regulation of learning, the regulation of
the secretion of several hormones (VP, OT, corticoste-
rone, �MSH, LHRH), the control of body temperature,
and in epilepsy. NPY, originating from the thalamic
IGL, is also an important input to the SCN, where it is
reported to alter the phase of the endogenous circadian
oscillator. Interestingly, it displays a nonphotic-like ef-
fect during the subjective day via presynaptic Y2-R and
inhibits photic phase shifting during the subjective
night via postsynaptic Y5-R, and maybe Y1-R (see
Gribkoff et al., 1998; Yannielli and Harrington, 2001; for
reviews). In addition, we report below that NPY is a
pineal neurotransmitter regulating the synthesis of
MEL.

NPY binds to several receptors (Yn-R) all belonging to
the superfamily of G-protein-coupled receptors. These
receptors were first described as belonging to two types:
Y1-R, mainly present postsynaptically, and Y2-R,
present presynaptically (Wahlestedt et al., 1986). Fol-
lowing cloning of the gene coding for Y1-R (Herzog et al.,
1992) and then for Y2-R (Rose et al., 1995), other types of

FIG. 9. A, intracellular effects of VIP and PACAP on the MEL synthesis pathway in rat pinealocytes. VIP (mainly originating from the PPG) and
PACAP (mainly originating from the TGG) bind to VPAC1-R to activate the cAMP/PKA/P-CREB pathway and increase AA-NAT mRNA, AA-NAT
activity, and MEL release. PACAP binding to PAC1-R increases Ca2� levels. B, VIP stimulation of MEL release from cultured rat pinealocytes may
be additive to that induced by the �-AR agonist isoproterenol (ISO). Dissociated rat pineal cells were cultured for 48 h in a standard culture medium
and incubated for 5 h with VIP (10 nM) and/or ISO (100 nM). MEL was measured in the culture medium by radioimmunoassay. �, P � 0.05 compared
to other values. C, VIP content in the rat pineal gland is higher at night than during the day. Rats were sacrificed during the day (12:00) or night (4:00)
and VIP was measured in the pineal gland by radioimmunoassay; �, P � 0.05 compared to daytime values (modified from Kaku et al., 1986, with
permission).
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Yn-R were identified (see Larhammar, 1996; Michel et
al., 1998 for reviews): Y3-R (Herzog et al., 1993), Y4-R
(Lundell et al., 1996), Y5-R (Hu et al., 1996; Haynes et
al., 1998, the “food intake” receptor), and Y6-R (Wein-
berg et al., 1996). In addition, it is noteworthy that
several studies have suggested that NPY may be one of
the endogenous ligands of � receptors (Roman et al.,
1989). To date, a few agonists have been found to differ-
entiate Y1-R, Y2-R, and Y3-R (Fuhlendorff et al., 1990),
but only one specific nonpeptidic Y1-R antagonist has
been described so far (BIBP3226; Rudolf et al., 1994).
Studies are in progress to find highly selective agonists
and antagonists for the various Yn-R. The transduction
systems associated with these receptors are not yet well
established because there are reported differences ac-
cording to the target organs (Aakerlund et al., 1990;
Michel et al., 1998). Nevertheless, it appears that all
Yn-R are coupled to Gi and associated with a more or less
strong inhibition of cAMP accumulation. Additional sig-
naling responses that are restricted to certain cell types
include mobilization of Ca2� from intracellular stores
sometimes involving IP3 and/or inhibition of the Ca2�

channel (Perney and Miller 1989; Aakerlund et al., 1990;
Selbie et al., 1995).

NPY is present in high concentrations in the mamma-
lian pineal gland (see Mikkelsen and Møller, 1999 for
review). Concentrations between 430 and 788 pmol/g
have been measured in the rat pineal gland (Chronwall
et al., 1985; Møller, 1994). NPY is mainly localized in
pineal fibers (except for the little brown rat—(Laemle
and Cotter, 1992) and the Syrian hamster—(Schröder,
1986) whose pineal gland contains some NPY-IR cells).
A dense NPYergic innervation has been observed in the
pineal gland of numerous species, namely the rat (Schon
et al., 1985), guinea pig (Schröder and Vollrath, 1986),
Syrian hamster (Schröder, 1986), gerbil (Shiotani et al.,
1986), sheep (Williams et al., 1989; Cozzi et al., 1992),
mink (the only species with rather low NPYergic inner-
vation: Møller et al., 1990b), monkey (Mikkelsen and
Mick, 1992), cow (Phansuwan-Pujito et al., 1993), cat
(Møller et al., 1994), cotton rat (Matsushima et al.,
1994), pig (Kaleczyc et al., 1994), Siberian hamster (Re-
uss and Olcese, 1995), and European hamster (Møller et
al., 1998). The NPY fibers enter the pineal gland mainly
through the distal part and end in the perivascular
spaces and between the pinealocytes throughout the
pineal gland. NPY is partly of sympathetic origin, colo-
calized with NE, since a large portion of the NPY fibers
disappears after SCGx. This has been reported in the rat
(Zhang et al., 1991), sheep (Cozzi et al., 1992), cat
(Møller et al., 1994), and European hamster (Møller et
al., 1998). In the mink, the majority of NPY fibers are of
extra-sympathetic origin (Møller et al., 1990b). It is sug-
gested that the extra-sympathetic NPYergic innervation
could be of central origin, in particular from the IGL that
contains NPY neurons (Card and Moore, 1989), and has
a direct neural connection with the proximal part of the

pineal gland (Korf and Møller, 1985; Mikkelsen and
Møller, 1990; Mikkelsen et al., 1991). It is also possible
that NPY could originate from the peripheral ganglia
(Møller et al., 1996).

In the rat pineal gland, as in other structures, NPY
acts both pre and postsynaptically (Simonneaux et al.,
1994a,b). NPY (EC50 � 50 nM) inhibits by 45% the
presynaptic release of NE induced by high K� depolar-
ization. This inhibition is sensitive to pertussis toxin,
and independent of, but additive to, �2-AR inhibition of
NE release (Simonneaux et al., 1994b). The Y2-R agonist
NPY (13–36), but not the Y1-R agonist (Leu31, Pro34)-
NPY induces a similar inhibition of NE release, suggest-
ing that presynaptic inhibition occurs via activation of
the presynaptic Y2-R, known to be associated with inhi-
bition of AC and sensitive to pertussis toxin (Wahlestedt
et al., 1986). It has been reported in other tissues that
presynaptic inhibition of NE release via Y2-R results
from complex Ca2�-dependent mechanisms (McCul-
lough and Westfall, 1996; Oellerich et al., 1994). It is
noteworthy that NPY and NE, colocalized in the same
terminals, can be released differentially, with high-fre-
quency stimulation inducing the release of both NE and
NPY and low-frequency stimulation inducing the re-
lease of NE only (Torres et al., 1992; May et al., 1995).
Therefore, both sympathetic neurotransmitters may
have differential effects on pineal activity depending on
the intensity of the sympathetic stimulation.

Postsynaptically, NPY acts on two transduction sys-
tems. To a small extent it inhibits (20 to 30%; EC50 � 5
nM) the increase in cAMP induced by �1-AR stimulation
(Olcese, 1991; Harada et al., 1992; Simonneaux et al.,
1994b; Rekasi et al., 1998). It also increases the concen-
trations of Ca2�

i, probably via Ca2� influx (Simonneaux
et al., 1999). NPY receptors have been characterized
pharmacologically (KD � 1 nM and Bmax � 40 fmol/mg
protein, Olcese, 1991). The rat pineal gland expresses
the gene coding for Y1-R, but not for Y2-, Y4-, or Y5-R
(Simonneaux et al., 1994b; Mikkelsen et al., 1999). In-
hibition of cAMP is better reproduced by the Y1-R ago-
nist, [Leu31, Pro34]-NPY, than by the Y2-R agonist,
NPY(13–36) (Simonneaux et al., 1994b). The NPY-in-
duced Ca2� increase in rat pinealocytes is inhibited in
the presence of the Y1-R antagonist, BIBP3226 (Simon-
neaux and Ribelayga, 2002). These data demonstrate
that both postsynaptic effects of NPY are mediated by
the Y1-R. The opposite effects of NPY on cAMP and
Ca2�

i may explain its complex effects on the MEL syn-
thesis pathway. In vitro studies have shown that NPY
stimulates the secretion of 5-HT by 20 to 40%, probably
via Ca2�-dependent activation of TPOH activity (Simo-
nneaux et al., 1997c); inhibits to a small extent �1-AR
stimulation of AA-NAT activity (20 to 30%) (Simon-
neaux and Ribelayga, 2002); and increases by 30 to 50%
HIOMT activity, probably via a Ca2�-dependent mech-
anism (Ribelayga et al., 1997). The effect of NPY on MEL
synthesis in vitro is not clearly established. In the rat,
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some studies have shown that NPY stimulates basal
MEL release and potentiates NE-induced MEL synthe-
sis (Vacas et al., 1987; Mess et al., 1991; Simonneaux et
al., 1994b), while other studies reported a moderate
(Rekasi et al., 1998; Pfeffer at al., 1999) or powerful
(Olcese, 1991) inhibition of NE-induced MEL release. In
the sheep, NPY displays no effect on MEL release (Wil-
liams et al., 1989). These contradictory results point out
the limitations of in vitro experiments in the search for
a physiological role of such a neurotransmitter with
complex pre and postsynaptic effects. Indeed, an early in
vivo study showed that intra-arterially injected NPY
stimulated HIOMT activity during the day, and inhib-
ited AA-NAT activity during the night (Reuss and Schrö-
der, 1987).

Although the effect of NPY in vivo on the synthesis of
MEL remains to be firmly established, the presence of a
dense NPYergic innervation of the pineal gland in nu-
merous mammals, the characterization of specific recep-
tors in the rat pineal gland, and the in vitro observation
of cellular and molecular effects of NPY on pinealocytes

are strong indicators of an important physiological role
of this peptide in the regulation of pineal metabolic
activity (Fig. 10A). Daily and circadian rhythms in NPY
concentrations have been observed in the rat pineal
gland (Shinohara and Inouye, 1994) with a maximal
concentration during the first part of the night (ZT 16)
and a minimum concentration at the end of the night/
beginning of the light (ZT 0). This observation suggests
that NPY participates in the expression of the daily
rhythm in MEL production. Since NPY moderately stim-
ulates (20 to 50%) HIOMT activity in vitro (Ribelayga et
al., 1997) and in vivo (Reuss and Schröder, 1987) and the
activity of this enzyme is slightly (30 to 50%) increased
at night by cAMP-independent mechanisms (Ribelayga
et al., 1997), we suggest that NPY might be the endog-
enous nocturnal stimulator of HIOMT activity in the rat
pineal gland. However, NPY content displays marked
seasonal variations in the pineal gland of certain rodent
species, for example the European hamster (Møller et
al., 1998). This species is of particular interest since it
shows large seasonal variations in the length and am-

FIG. 10. A, Pre and postsynaptic effects of NPY on the noradrenergic regulation of MEL synthesis in the rat pineal gland. NPY (mainly originating
from the SCG and IGL) binds to postsynaptic Y1-R. On the one hand, NPY inhibits AC activity and therefore reduces the �1-AR-induced increase in
cAMP levels and AA-NAT activity; on the other hand, it increases intracellular levels of Ca2�, which may lead to a moderate increase in TPOH and
HIOMT activities. In addition, NPY binds to presynaptic Y2-R to reduce the release of NE from the sympathetic fibers. B, the seasonal increase in the
density of NPY innervation is positively correlated to an increase in HIOMT activity in the pineal gland of the European hamster. The pineal gland
of European hamsters sacrificed in October or December were stained for NPY-IR or assayed for HIOMT activity. The increase in NPY-IR observed
in December was associated with an increase in HIOMT activity (from Møller et al., 1998, with permission; Ribelayga et al., 1999, with permission).
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plitude of the nocturnal MEL peak and the diurnal 5-ML
peak (increase from September to December, then de-
crease until a minimum reached in May/June; Vivien-
Roels et al., 1997). The density of the NPYergic fibers,
essentially originating from the SCG, increases rapidly
from the end of October until mid-December, then re-
turns gradually to minimal values in April (Møller et al.,
1998; Fig. 10B). This augmentation is specific for NPY,
since during the same period TH activity remained con-
stant (Møller et al., 1998). Interestingly, HIOMT activity
is significantly enhanced by 80% from the end of October
to mid-December, in association with the increased
NPYergic innervation (Ribelayga et al., 1998c; Fig. 10B).
Furthermore, these increases are also associated with
an augmentation of the peak amplitude of 5-ML (Ribe-
layga et al., 1998c) and MEL (Vivien-Roels et al., 1997).
These results suggest that, in the European hamster,
NPY is partly (since the amplitude of the nocturnal MEL
peak begins to increase before the increased NPYergic
innervation) involved in the seasonal regulation of noc-
turnal MEL and diurnal 5-ML synthesis via stimulation
of HIOMT activity. These experimental data are signif-
icant because they indicate for the first time that a
neuropeptide may be involved in the annual regulation
of the metabolic activity of the pineal gland. In the
Siberian hamster, we have also reported photoperiodic
regulation of HIOMT activity, which is positively asso-
ciated with photoperiodic regulation of the amplitude of
the nocturnal MEL peak (Ribelayga et al., 2000). We are
currently investigating a possible correlation of this
with NPY.

It remains necessary to determine the role of NPY pre
and postsynaptically in the pineal gland. The in vivo
study of Reuss and Schröder (1987) reported that NPY
injected at night inhibits rat pineal AA-NAT activity.
This nocturnal inhibition could result from presynaptic
inhibition of NE release and/or postsynaptic inhibition
of the cAMP/AA-NAT/MEL pathway. It is possible that
NPY is involved in the rapid inhibition of NE release
induced by acute light exposure at night (Drijfhout et al.,
1996c). In support of this, various lesion experiments
suggest involvement of NPY in the light-induced inhibi-
tion of MEL synthesis and release (Dafny, 1980; Cipolla-
Neto et al., 1995; Bartol et al., 1997; see Section V.A.6).
It is noteworthy that NPY may act on MEL synthesis at
a presynaptic level on sympathetic fibers, at a postsyn-
aptic level on pinealocytes, and on the blood vasculature
of the pineal gland since it displays a powerful vasocon-
strictor effect in many tissues, including the pineal
gland (Nilsson, 1991).

All of the above in vivo and in vitro experiments point
to complex effects of NPY in the daily and seasonal
regulation of MEL secretion (see Simonneaux and Ribe-
layga, 2002 for review). To establish the precise physio-
logical role of NPY in the pineal gland at different times
of the daily and annual cycles, it will be necessary to
adopt a more direct in vivo approach (e.g., pineal micro-

dialysis to measure the extracellular release of NPY and
to test local application of specific NPY ligands on en-
dogenous MEL release; use of antisense molecules for
NPY or NPY-R).

3. Vasopressin and Oxytocin. VP and OT were the
first peptides isolated from nervous tissue, namely the
neurohypophysis (Du Vigneaud et al., 1954). These two
peptides are very similar and stem from a common an-
cestral peptide (see Mohr and Richter, 1994 for review).
They are made of nine amino acids with a disulfide bond
between the Cys1 and Cys6. The sequence of the gene
coding for their precursors is very similar and contains a
signal peptide, the peptide, and neurophysin (I for OT
and II for VP; the carrier of the corresponding peptide).
Each gene codes for only one transcript. The mRNA
coding for VP and OT, however, can be modified in the 3�
end by a polyadenylated tail that is thought to stabilize
the mRNA and/or improve the efficiency of the transla-
tion (see Mohr et al., 1992; Gainer and Wray, 1994;
Mohr and Richter, 1994 for reviews).

VP and OT were first considered as neurohormones,
synthesized in the magnocellular neurons of the hypo-
thalamic supraoptic nuclei (SON) and PVN, transported
through the neurohypophysis via hypothalamo-pituitary
axons and released in the bloodstream to act on their
peripheral target organs (see Argiolas and Gessa, 1991;
Richard et al., 1991 for reviews). OT acts essentially on
the smooth muscular fibers of the uterus to induce uter-
ine contractions during delivery, and on the myoepithe-
lial cells of mammary glands to induce milk ejection. VP
acts primarily on the epithelial cells of the distal kidney
tubule to regulate membrane water channel aquaporin
to ensure water homeostasis. Additionally, VP induces
vasoconstriction and stimulates glycogenesis. VP and
OT have also been described as neurotransmitters of the
central nervous system (Buijs et al., 1978). These neu-
ropeptides are synthesized in the SON and PVN neu-
rons and in other neural structures (essentially the SCN
(VP only) and the bed nucleus of the stria terminalis).
VPergic and OTergic neurons project to many brain
regions, especially the amygdala, lateral septum, hip-
pocampus, cortex, and spinal cord (Buijs et al., 1978,
1988), indicating that they are involved in the regulation
of several central functions. OT is involved in learning
and memory processes, maternal and sexual behaviors,
steroidogenesis, tolerance and dependence mechanisms,
and the regulation of the secretion of pituitary hormones
(including prolactin). VP is involved in memory acquisi-
tion and retention, and in the release of pituitary hor-
mones (see Richard et al., 1991; Mohr et al., 1992;
Gainer and Wray, 1994; Mohr and Richter, 1994 for
review). VPergic innervation displays gender and sea-
sonal variations, and is dependent on sex hormone con-
centrations in some brain areas, such that the increase
in VP is correlated to an increase in testosterone con-
centration (see De Vries et al., 1984, 1986, 1994; Hermes
et al., 1990; Pévet et al., 1987, for review). Therefore, VP
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is involved in the regulation of some seasonal functions
such as hibernation (Hermes et al., 1989) and daily
torpor (Ouarour et al., 1995). OT and VP are also in-
volved in the transmission of circadian information
within the photoneuroendocrine system. In particular,
VP, whose promoter gene contains a clock protein-regu-
lated E-box (Jin et al., 1999), is considered to be one of
the main SCN outputs involved in the circadian regula-
tion of hormone release (see Buijs and Kalsbeek, 2001
for review).

To date four types of receptors for OT and VP have
been characterized. The OT receptor (OT-R) is present in
various brain areas, which include the olfactory system,
hippocampus, and several hypothalamic nuclei (Freund-
Mercier et al., 1987; Dubois-Dauphin et al., 1992; Ker-
marik et al., 1995). The gene coding for this receptor has
been cloned in humans (Kimura et al., 1992) and the rat
(Rozen et al., 1995). The hepatic/vascular type of VP
receptor (V1a-R) is present in the liver, SCG, vascular
system of the central nervous system, and in several
brain areas, especially the olfactory bulb, cortex, lateral
septum, hippocampus, and a number of hypothalamic
nuclei including the SCN and the arcuate nucleus (Tri-
bollet et al., 1988; Dubois-Dauphin et al., 1990, 1992;
Theler et al., 1993; Kermarik et al., 1995). The gene
coding for this receptor has been cloned in the rat (Morel
et al., 1992) and humans (Thibonnier et al., 1994). The
pituitary-type VP receptor (V1b-R) is mainly present in
the pituitary, but also in other peripheral (intestine,
heart) and central (hypothalamus) structures. The cod-
ing gene has been cloned in humans (Sugimoto et al.,
1994) and the rat (Lolait et al., 1995). The V2-R is
present in the kidney and its coding gene has been
cloned in rat (Lolait et al., 1992) and humans (Barberis
et al., 1993). OT-R, V1a-R, and V1b-R are all coupled via
Gq proteins to PLC to induce PI turnover and Ca2�

i
increase, whereas the V2-R is positively coupled to AC
(see Birnbaumer, 2000; Gimpl and Fahrenholz, 2001; for
reviews). In addition, it has been reported that the V1a-R
activates not only PLC, but also phospholipases A and D
(Thibonnier, 1992; Briley et al., 1994).

The presence of VP, OT, and some of their metabolites
have been reported in the pineal gland of several mam-
mals (Dogterom et al., 1980; Pévet et al., 1980c; Fisher
and Fernstrom, 1981; Geelen et al., 1981; Liu et al.,
1988; Noteborn et al., 1988). The first studies using
radioimmunoassay and high-performance liquid chro-
matography suggested that these peptides were specific
to the pineal gland, giving the gland its antigonadotropic
and milk-ejection properties (see Pévet, 1983b;
Vaughan, 1984 for review). From 1980, the use of im-
munocytochemistry demonstrated that VP and OT are
usually localized in the pineal fiber endings and not in
the pineal cells (Buijs and Pévet, 1980). VPergic and
OTergic fibers were observed in the pineal gland of the
rat (Buijs and Pévet, 1980), hedgehog (Nürnberger and
Korf, 1981), dog (Matsuura et al., 1983), monkey (Ron-

nekleiv, 1988), cow (Olcese et al., 1993; Badiu et al.,
1999; 2001), and pig (Przybylska-Gornowicz et al.,
2002). These peptides are thought to originate from the
PVN (Buijs and Pévet, 1980; Nürnberger and Korf,
1981). This is strengthened by the demonstration of a
monosynaptic connection between the PVN and the pi-
neal gland passing through the stria medullaris, using
retrograde and anterograde tracing (Korf and Wagner,
1980; Guérillot et al., 1982; Møller and Korf, 1983a,b;
Reuss and Møller, 1986; Møller et al., 1990a; Larsen et
al., 1991) and electrophysiology (Reuss et al., 1985).
Nevertheless, this hypothesis remains controversial
(Liu et al., 1991). Recently, using more sensitive molec-
ular biology tools (RT-PCR and ISH), it has also been
proposed that VP is synthesized in pineal cells. Vpm-
RNA has been observed in the pineal gland of the rat
(Lepetit et al., 1993), cow (Olcese et al., 1993; Badiu et
al., 1999), and sheep (Matthews et al., 1993). Several
hypotheses can explain that, in contrast, VP-IR cells are
absent in the pineal gland: the quantity of synthesized
VP is too low to be detected by immunocytochemistry;
the VpmRNA is not translated into a peptide, and the
detected mRNA is not present in cells but in the nerve
endings, as observed in the pituitary (Mohr and Richter,
1993). In contrast to VP, recent data using ISH and
immunohistochemistry have demonstrated the presence
of a few neuron-like cells synthesizing and containing
OT in the bovine pineal gland (Badiu et al., 2001). In
general, the content of VP and OT in the rat pineal gland
is rather low (20 (VP) and 14 (OT) fmol/pineal; Liu and
Burbach, 1987).

In an early experiment with perifused rat pineal
glands we reported that high doses of VP and OT poten-
tiate (by 1.5- to 2.5-fold) the �1-AR-induced stimulation
of MEL synthesis (Simonneaux et al., 1990b). However,
in a more sensitive model using cultured pineal cells, we
found that at physiological doses (ED50 � 7 nM) only VP
could potentiate the �1-AR-induced synthesis of MEL
(Simonneaux et al., 1996a). VP potentiation of MEL
synthesis occurs for low and moderate, but not high,
�1-AR stimulation. The VP effect occurs via potentiation
of cAMP accumulation (Simonneaux et al., 1996a) and
consequent AA-NAT activation (Stehle et al., 1991). The
observation that VP potentiation of MEL synthesis is
inhibited by a V1a-R antagonist (Simonneaux et al.,
1996a) suggested the presence of V1a-R receptors in the
rat pineal gland. By using a specific linear antagonist of
V1a-R (Barberis et al., 1995) we have shown that mem-
branes isolated from the rat pineal gland possess a low
density (13 fmol/mg protein) of high affinity V1a-R (KD �
10 pM). However, because the pineal gland contains
numerous blood vessels and the V1a-R is highly ex-
pressed in endothelial cells, we further characterized the
localization of these receptors in the rat pineal gland.
The combination of binding studies using an iodinated
V1a-R ligand together with 5-HT immunohistology on
dissociated pineal cells showed that a small portion (20
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to 30%) of isolated pinealocytes is indeed endowed with
V1a-R. In addition, we found that the pharmacological
profile of these pineal receptors is similar to that of the
V1a-R and that the gene coding for V1a-R but not for the
other VP/OT receptors is expressed in the cultured pi-
nealocytes (Simonneaux, unpublished data). All these
observations are in good agreement with the presence of
V1a-R in rat pinealocytes and around blood vessels, as
suggested by previous studies (van Leeuwen et al., 1987;
Ostrowski et al., 1994; Tribollet et al., 1999). In several
central structures activation of V1a-R induces an IP3-
dependent increase of Ca2�

i. The effect of VP on the
intracellular levels of Ca2� in dissociated pineal cells
was therefore assessed (Simonneaux, unpublished
data). We observed that numerous pineal cells respond
to VP by a transient increase in Ca2�

i, an effect abol-
ished by a V1a-R antagonist. Among these cells were a
number of pinealocytes and fibroblast-like cells. These
data are in agreement with the observation that VP
increases PI turnover in the rat pineal gland (Novotna et
al., 1995) but not with that of Schomerus et al. (1995)
who reported no effect of VP on the Ca2�

i level in cul-
tured rat pinealocytes.

The presence of VPergic nerve endings in the pineal
perivascular space (Buijs and Pévet, 1980) and the loca-
tion of a high density of V1a-R in the pineal blood vessels

(Ostrowski et al., 1994; Simonneaux, unpublished obser-
vations), which are associated with the well character-
ized vasoconstrictor effect of VP, suggest that VP could
also modulate blood flow in the pineal gland.

Interspecific differences in the effect of VP and OT are
possible. Whereas VP is stimulatory in the rat pineal
gland, it appears to be inhibitory in the bovine pineal
gland (Olcese et al., 1993). In contrast to the rat, OT may
be a transmitter in the sheep pineal gland since OT-R,
but not V1a-R, have been identified (Rahmani et al.,
1997). To date, however, only the absence of a VP or OT
effect on basal cAMP levels has been reported in cul-
tured sheep pineal glands (Morgan et al., 1988).

In the rat pineal gland the above in vitro studies
showed that VP, probably originating from the hypotha-
lamic PVN, binds to specific V1a-R in a subpopulation of
pinealocytes, stimulates PI turnover, and increases
Ca2�

i levels to potentiate the NE/�1-AR/cAMP/AA-NAT/
MEL pathway (Fig. 11A). It remains necessary to delin-
eate the precise physiological role of VP on MEL synthe-
sis. Recently, we have developed the in vivo technique of
pineal microdialysis to study the effect of locally infused
drugs on endogenous MEL secretion from the rat pineal
gland (Barassin et al., 1999). By using this in vivo ap-
proach it has been shown that VP infused into the pineal
gland at the beginning of the MEL rise (but not when the

FIG. 11. A, intracellular effects of VP on the MEL synthesis pathway in rat pinealocytes. VP, originating from the PVN, binds to PLC-coupled V1a
receptor, increases the intracellular level of Ca2�, and potentiates the �1-AR-induced increase in AA-NAT activity and MEL synthesis and release. B,
in vivo infusion of VP potentiates the endogenous nocturnal release of MEL in the rat pineal gland. Endogenous release of MEL was measured by
intrapineal microdialysis for three consecutive nights in the pineal gland of one rat. On the second day of the experiment infusion of 50 �M VP induced
a significant increase in the endogenous release of MEL lasting for the duration of the VP infusion (from Barassin et al., 2000, with permission).
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release is maximal) further increases the endogenous
MEL secretion (Fig. 11B; Barassin et al., 2000). This in
vivo observation is thus in good agreement with our
previous in vitro observations and strongly indicates
that VP is able to modify MEL synthesis and release.
Whether this VP-induced modification occurs on a daily
and/or a seasonal basis remains to be determined. Some
studies report a small daily variation in VP and OT
content in the rat pineal gland, with nocturnal values
being slightly (28%) higher (Gauquelin et al., 1988; Liu
and Burbach, 1988). These variations persist in D/D and
could result from a nocturnal decrease in aminopepti-
dase activity (Liu and Burbach, 1988). A lesion of the
stria medullaris, from where the PVN neurons forward
their fibers to the pineal gland, significantly decreased
AA-NAT (�50%) and HIOMT (�35%) activity measured
4 h after the beginning of the night (Møller et al., 1987).
This lesion also produced a significant reduction of the
amplitude of the nocturnal MEL peak (Reuss et al.,
1987). These in vivo observations suggest that VP, orig-
inating from the hypothalamic PVN, potentiates the
nocturnal NAergic stimulation of MEL synthesis. In ad-
dition, pineal VP and OT concentrations display a large,
temporary increase from July to mid-August (14 to 82
fmol VP/pineal and 20 to 193 fmol OT/pineal) in rats
kept in a constant photoperiod (Liu and Burbach, 1987;
Liu et al., 1991). This summer peak in peptide concen-
trations is preserved after SCGx, indicating that NAer-
gic stimulation is not responsible for this increase (Pre-
chel et al., 1989). It has been suggested that the summer
increase in VP and OT originates in the pineal gland
itself since a simultaneous increase has not been ob-
served in the SCN and PVN (Liu et al., 1991). No sea-
sonal variation in Vp or Ot mRNA expression was ob-
served, however, using RT-PCR on rat pineal cDNA
using specific primers for Vp and Ot mRNA (Simon-
neaux, unpublished observations). Seasonal variations
in the pineal content of VP and OT have also been
described in hedgehog (Nürnberger and Korf, 1981), the
VPergic and OTergic innervation of the pineal gland
being very low in summer and increasing in winter. A
marked seasonal variation in OT content has also been
observed in the bovine pineal gland, with a 3-fold higher
value in September compared to the other months (Ba-
diu et al., 2001). In addition, the quantity of VP in-
creases in the pineal gland of female rats at the end of
proestrus/beginning of estrus (Moujir et al., 1990b). It is
possible that this increase originates from the blood-
stream since VP, whose synthesis depends on sex hor-
mones (De Vries et al., 1986), reaches its highest level
during proestrus and increases after estradiol adminis-
tration (Skowsky et al., 1979). The observation of sea-
sonal variations in pineal VP and OT suggests that these
neuropeptides are involved in the seasonal regulation of
pineal metabolic activity, but this hypothesis requires
further study.

4. Somatostatin. SOM has been isolated from sheep
hypothalamic extracts and identified as being an inhib-
itor of growth hormone release. SOM was first named
after this effect on growth hormone (somatotropin re-
leasing inhibitor factor; Brazeau et al., 1973). It is a
cyclic tetradecapeptide with a disulfide bridge between
the Cys3 and Cys14, also existing under a longer form of
28 amino acids. SOM is widely distributed in the central
nervous system and in peripheral organs where it is
involved in neuroendocrine, motor, and cognitive func-
tions. SOM also regulates the differentiation and prolif-
eration of normal and tumor cells (see Rubinow et al.,
1995; Schindler et al., 1996, for review).

In 1992/1993, five receptors for SOM (sst1–5) were
characterized and found to be located in many periph-
eral and central areas. Whereas the sst1, sst3–5 genes
each generate a single receptor protein, alternative
splicing of sst2 mRNA gives rise to two isoforms, sst2A
and sst2B (Yamada et al., 1992a,b, 1993; Xu et al., 1993;
Csaba and Dournaud, 2001). The pharmacology of these
receptors is not well known because of the lack of specific
agonists and antagonists. Two groups have been de-
fined: SST1 (sst2, sst3, sst5) with a high affinity for the
short SOM analogs (especially octreotide) and SST2
(sst1 and sst5). The transduction signaling pathway as-
sociated with these receptors is not clearly established.
Studies performed on recombinant receptors expressed
in a cell line have produced various intracellular effects.
The five receptors are generally associated with an in-
hibition of AC, but also activation of PLC and type A2

phospholipase, modulation of the Na�/H� pump, modu-
lation of Ca2� and K� fluxes, and activation of MAP
kinases (see Raulf et al., 1996; Schindler et al., 1996;
Csaba and Dournaud, 2001; for review).

The presence of SOM in the pineal gland was shown
for the first time by Pelletier et al. (1975) in the rat (and
later on by Pévet et al., 1980b; Finley et al., 1981; Webb
et al., 1984; Møller et al., 1995) then in the hamster,
gerbil, mouse (Webb et al., 1984), sheep, pig (Lew and
Lawson-Willey, 1987), cow (Peinado et al., 1989; Møller
et al., 1992), and human (Bouras et al., 1987). The rat
pineal gland contains approximately 0.3 to 3 ng SOM/mg
protein (Webb et al., 1985). SOM is mainly observed in
the nerve fibers and in some neuronal-type cells of the
pineal gland in the rat (Møller et al., 1995), European
hamster (Møller, personal communication), sheep, cow
(Viader et al., 1990, although discussed by Møller et al.,
1992), and pig (Przybylska-Gornowicz et al., 2000a). In
the rat, SOM is probably synthesized by the pineal cells
since they contain mRNA coding for this peptide (Mato
et al., 1993, 1997; Møller et al., 1995). The SOMergic
fibers are not of sympathetic origin since the pineal
content of SOM is not modified after SCGx (Webb et al.,
1984, 1985). It is proposed that these fibers could be of
central origin because the number of SOMergic fibers
and the peptide concentration are 4 times higher in the
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proximal than in the distal area of the gland (Peinado et
al., 1989; Møller et al., 1992).

The expression of functional SOM receptors in the
pineal gland remains to be established. In the rat pineal,
mRNA coding for sst2 was detected by RT-PCR (Mato et
al., 1997) but the corresponding receptor could not be
found by autoradiography (Sabry and Suzuki, 1993). In
the pig pineal gland, immunoreactivity for only one re-
ceptor subtype (SST3) was demonstrated (Przybylska-
Gornowicz et al., 2000a). In the ovine pineal gland, no
sst1 mRNA could be detected (Debus et al., 2001).

While the presence of SOM in the pineal gland has
been established for a long time, its effect on pineal
metabolic activity has not yet been determined. Some
authors have reported a lack of effect of SOM on basal or
stimulated MEL synthesis (Kaneko et al., 1980; Morgan
et al., 1988; Simonneaux, unpublished results) and in-
travenous injections of SOM had no effect on the noctur-
nal peak of MEL (Webb et al., 1985). Other studies,
however, have reported that SOM potentiates the NE-
induced synthesis of MEL (Mess et al., 1991) or activates
acetyl coenzyme A hydrolase by protein-thiol/disulfide
exchange mechanisms (Namboodiri et al., 1982). The
synthesis of SOM in some pineal cells suggests that this
peptide could display paracrine effects on other pineal
functions (for example, on the number of synaptic rib-
bons: Gupta et al., 1992). It is also proposed that SOM
may be involved in pineal development and cell differ-
entiation since the number of SOM-containing cells
(Viader et al., 1995) and the quantity of mRNA coding
for this peptide (Mato et al., 1997) decrease from 8 to 15
days after birth in the rat pineal gland. Similarly, the
number of SOM-containing pineal cells and fibers de-
crease with age in the pig pineal gland (Przybylska-
Gornowicz et al., 2000a). A general role in neurogenesis
has been proposed for SOM by studies in the cerebellum
(Gonzalez et al., 1992; Laquerrière et al., 1992). In ad-
dition, the possibility of a presynaptic effect of SOM on
NE release is worthy of study, since the SCG possess
SOM receptors (Manthy et al., 1992) and SOM inhibits
Ca2� currents of the sympathetic neurons in the rat
(Shapiro and Hille, 1993) and NE release by sympa-
thetic neurons in the chicken (Boehm and Huck, 1996).

It is interesting to note that pineal SOM content dis-
plays a daily variation with a peak at the end of the day
(ZT 13) in several species (Webb et al., 1985, 1988) and
a seasonal variation with higher values during autumn/
winter (Peinado et al., 1990).

5. Substance P. sP was discovered in 1931 by Von
Euler and Gaddum because of its property of decreasing
arterial pressure via vasodilatation of the peripheral
vascular system. Its 11-amino acid sequence was iden-
tified by Chang et al. (1971). sP belongs to the neuroki-
nin/tachykinin family (NK), which consists of NKA and
NKB in addition to sP. These NK are coded by two
precursor genes: Ppt (preprotachykinin)-A coding for sP
and NKA, and Ppt-B coding for NKB (see Regoli et al.,

1994 for review). Each of the three peptides displays an
optimal affinity for one of the three NK receptors: NK1
(sP), NK2 (NKA), and NK3 (NKB). These receptors are
coupled to an activation of AC and/or PLC. sP is partic-
ularly involved in the transmission of nociception. How-
ever, it is also involved in other biological functions such
as regulation of arterial pressure, secretion of several
hormones (pancreatic, pituitary), release of some neuro-
transmitters (especially ACh, DA), and immune and in-
flammatory functions (see Snijdelaar et al., 2000 for
review). sP is also involved in the transmission of photic
information from the retina to the SCN (Mikkelsen and
Larsen, 1993; Shirakawa and Moore, 1994) and displays
a critical role together with Glu in photic resetting of the
circadian clock (Shibata et al., 1992; Challet et al., 1998;
Kim et al., 2001).

sP was one of the first neuropeptides identified in the
mammalian pineal gland (Ljungdahl et al., 1978). An
sPergic innervation was described in the pineal gland of
the rat (Ronnekleiv and Kelly, 1984), gerbil (Shiotani et
al., 1986), monkey (Ronnekleiv, 1988), cow (Møller et al.,
1993), cotton rat (Matsushima et al., 1994), tree shrew
(Kado et al., 1999), and pig (Przybylska-Gornowicz et al.,
2000b). The sPergic innervation is dense, dispersed
through the whole gland, and terminates in the perivas-
cular space and between the pineal cells (see, for exam-
ple, Ronnekleiv and Kelly, 1984). The possibility that
sPergic fibers originate from neurons of the habenular
nuclei, at least in the rat and cow, rely on the following
observations: 1) some sP-containing neurons of the ha-
benular area project their axons via the habenular com-
missure toward the proximal part of the pineal gland
(Ronnekleiv and Kelly, 1984; Møller et al., 1993); 2)
pineal sPergic innervation is not modified after SCGx
(Ronnekleiv and Kelly, 1984; Matsuura et al., 1994;
Kado et al., 1999); 3) a direct neural connection between
the habenular nuclei and the pineal gland was demon-
strated by lesion experiments (Ronnekleiv and Møller,
1979; Møller and Korf, 1983b), electrophysiology (Reuss
et al., 1984), and tracing studies (Møller and Korf,
1983b). In addition, pineal sP is proposed to originate
from the trigeminal ganglia (see Shiotani et al., 1986;
Reuss et al., 1992a; Reuss, 1999 for review). NKA, an-
other tachykinin, has been found in the rat pineal gland,
its content being increased following castration or SCGx
(Debeljuk et al., 1998).

Despite the dense pineal sPergic innervation, no effect
of sP on pineal metabolic activity has yet been reported
(Yuwiler, 1983a; Govitrapong and Ebadi, 1986; Mess et
al., 1991; Simonneaux, unpublished results). However,
an NK1 type of sP receptors has been characterized in
the bovine pineal gland (Govitrapong and Ebadi, 1986).
Additional studies are necessary to establish the role of
sP in the mammalian pineal gland. Localization of NK1
receptors on pineal cell types would help to delineate its
function. It might also be interesting to study the effect
of sP on NE release (sP modulates NAergic transmission
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in some tissues, Yusof and Coote, 1987) and on pineal
blood flow.

6. Calcitonin Gene-Related Peptide. CGRP is a cyclic
peptide (with a disulfide bond between Cys2 and Cys7) of
37 amino acids (see Wimalawansa, 1996 for review). It is
generated by the alternative splicing of a primary
mRNA transcript from the gene coding for calcitonin
(CT; Amara et al., 1984). The CT/CGRP gene conse-
quently codes for two peptides, CT and/or CGRP�, ac-
cording to the tissue type (CT in the thyroid, CGRP in
the nervous system and various peripheral structures,
especially the cardiovascular system). There is another
gene that codes only for CGRP�. CGRP is found in
various nervous structures (especially the spinal cord,
trigeminal ganglia, pituitary gland) and in the cardio-
vascular system. CGRP induces strong vasodilatation
(Brain et al., 1985) and is involved in the regulation of
vascular tonus and the blood flow of various organs. It is
also involved in the ascending sensory pathway from the
periphery to the central nervous system as well as in the
regulation of immune and inflammatory functions, se-
cretion of pituitary hormones, secretion of pancreatic
and gastric enzymes, and cell proliferation and growth.
CGRP is present in the mouse SCN and IGL neurons,
indicating that it could be involved in the mammalian
circadian system (Park et al., 1993). Two receptor types
have been identified: CGRP1 and CGRP2 are distin-
guished by their affinity for the antagonist CGRP 8-37
(CGRP1) or the agonist (CGRP2). These receptors dis-
play a wide distribution in the central nervous system
and the periphery. Activation of these receptors in-
creases the intracellular level of cAMP, but other signal
transduction systems may also be involved (Juaneda et
al., 2000).

CGRP-containing fibers have been identified in the
pineal gland of the gerbil (Shiotani et al., 1986), rat
(Reuss et al., 1992a; Matsuura et al., 1994), cotton rat
(Matsushima et al., 1994), and tree shrew (Kado et al.,
1999). In the cotton rat, CGRP fibers arrive via the
conarian nerve; they are largely spread out in the su-
perficial pineal gland, being rare in the stalk and deep
pineal gland, and absent in the habenular and posterior
commissures (Matsushima et al., 1994). In the rat,
CGRP-containing fibers are abundant in the superficial
pineal gland but do not disappear after SCGx (Matsuura
et al., 1994). Using tracing techniques and immunocyto-
chemistry in the gerbil pineal gland, Shiotani et al.
(1986) have shown that CGRP may originate from the
trigeminal ganglia (see Reuss, 1999 for review). It is
noteworthy that in several species CGRP has been found
in SCG neurons; however, it is not established whether
these neurons project to the pineal gland (Lee et al.,
1985). Despite the dense CGRP fiber innervation of the
pineal gland of several species, no effect of this peptide
on pineal metabolism has yet been found. Given its
strong vasodilator effect, it would be interesting to study
the effect of CGRP on the regulation of pineal blood flow.

7. Secretoneurin. SN is a 33-amino acid peptide dis-
covered in the nervous system in 1993 (Kirschmair et
al., 1993). It is synthesized from secretogranin II, which
belongs to the chromogranin family (Vaudry and Con-
lon, 1991). These large secretory proteins are located in
the large vesicles of various endocrine and nervous tis-
sues (Fischer-Colbrie et al., 1995). In the brain over 90%
of secretogranin II is metabolized into SN. SN occurs in
high concentrations in the hypothalamus and median
eminence, with lower levels in the lateral septum, habe-
nular nuclei, and locus coeruleus. SN specifically acti-
vates various cell functions including the migration of
monocytes, eosinophils, fibroblasts, and smooth muscle
cells, which suggests that the peptide may modulate
inflammatory reactions (Wiedermann, 2000). In the cen-
tral nervous system it may modulate neurotransmission
since it stimulates DA release in the striatum (Agneter
et al., 1995). Secretoneurin G-protein-linked receptors
have been functionally characterized (Schneitler et al.,
1998). The description of SN colocalized with NE in the
SCG neurons (Klimaschewski et al., 1996b) prompted us
to study this peptide in the rodent pineal gland (Simo-
nneaux et al., 1997a).

SN and larger intermediate forms were present in the
pineal gland of the three rodents studied (rat, Syrian
hamster, Siberian hamster) with interspecies differ-
ences. SN-IR was higher in the female Syrian hamster
(122 fmol/pineal) than in the rat (34 fmol/pineal) and
Siberian hamster (undetectable level). In the rat, SN-IR
decreased by 50 to 60% in animals maintained in L/L or
SCGx, indicating a partial sympathetic origin. A few
fibers were present in the proximal part of the gland,
apparently coming from the deep pineal gland via the
stalk, indicating a partial central origin of the SN fibers
as well (possible origin: some parts of the geniculate
complex, some hypothalamic areas, the habenula). In
the rat pineal gland there were no SN-IR cells. In the
Syrian hamster, SN-IR was present not only in fibers
but also in several “neuron-like” cells of the pineal gland.
In the Siberian hamster pineal gland there were very
few SN-IR fibers and cells. They were no gender differ-
ences in the rat SN-IR, but in the Syrian hamster SN-IR
was significantly higher in females than in males. Pre-
liminary data indicate that this difference could be re-
lated to the sex hormones, since castration induced an
increase (from 25 to 52 fmol/pineal) of SN-IR in the
pineal gland of male Syrian hamsters raised in LP (Si-
monneaux and Fisher-Colbrie, unpublished results).

In cultured rat pinealocytes we have observed that SN
moderately inhibits intracellular concentrations and re-
lease of 5-HT. The effect of SN on MEL release was less
and may result from the inhibitory effect on 5-HT syn-
thesis. The mechanism and sites of action of SN are still
to be determined. In addition, colocalization of SN with
NE in the sympathetic fiber endings suggests that the
peptide may have a presynaptic effect on NE release.
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8. Hypocretin. Recently, two neuropeptides selec-
tively expressed in the hypothalamus have been identi-
fied and found to exert neuroexcitatory and food-stimu-
lating activities. They have been termed HCRT (de
Lecea et al., 1998) or orexin (Sakurai et al., 1998) 1 and
2. In addition, these peptides are involved in cardiovas-
cular function, hormone homeostasis, and sleep-wake
behavior (see Sutcliffe and de Lecea, 2000 for review).
The use of HCRT knockout mice has demonstrated a
major involvement of HCRT in the pathophysiology of
narcolepsy (Chemelli et al., 1999; Siegel, 1999). HCRT-1
(33 amino acids) and HCRT-2 (28 amino acids) bind to
orexin receptors. HCRT-1 binds better to orexin-1 than
orexin-2 receptors, whereas both peptides bind with a
similar affinity to orexin-2 receptors (Sakurai et al.,
1998).

Neurons containing HCRT are exclusively located in
the area of the lateral hypothalamus and widely project
to numerous regions of the central nervous system, such
as various hypothalamic nuclei, locus coeruleus, septal
nuclei, bed nucleus of the stria terminalis, various tha-
lamic nuclei, and spinal cord. (Peyron et al., 1998). The
recent finding that food intake may affect circadian clock
entrainment (Challet et al., 1996) and the occurrence of
neural connections between the lateral hypothalamus
nuclei and the pineal gland has led us to investigate the
possibility of HCRT regulation of pineal metabolism in
the rat (Mikkelsen et al., 2001).

The rat pineal gland was found to receive a strong
central HCRTergic input, with fibers running via the
medial habenular nuclei and the habenular commissure.
HCRTergic fibers end mainly in the deep pineal gland, a
few of them continuing via the pineal stalk to the prox-
imal part of the superficial gland. The pineal gland was
shown to express orexin-2 but not orexin-1 receptors,
indicating that HCRT is a putative neurotransmitter
involved in the regulation of pineal metabolism. Indeed,
HCRT-2 was able to partially inhibit (by about 30%) the
ISO-stimulated increase in AA-NAT activity and MEL
release in cultured rat pinealocytes (Mikkelsen et al.,
2001). These data suggest that HCRT released by cen-
tral fibers modulates the stimulatory sympathetic input
of the pinealocytes. Interestingly, the release of HCRT
from the hypothalamic neurons shows a significant day/
night variation with higher levels at nighttime, during
the active phase in the rat (Yoshida et al., 2001). These
findings support an involvement of this hypothalamic
peptide in the daily rhythm of MEL synthesis. Addition-
ally, it would be of interest to study whether these food-
regulating peptides are also involved in the adaptation
of photoperiodic animals to the seasonal changes in food
availability.

9. Delta-Sleep Inducing Peptide. DSIP is a 9-amino
acid peptide that can promote sleep in animals under
certain conditions. In addition, DSIP displays several
other physiological effects including modification of
thermoregulation, heart rate, blood pressure, and pain

threshold, some of these effects being circadian cycle-
dependent (see Yehuda and Carasso, 1988 for review).

When injected into the bloodstream, DSIP accumu-
lates in the pineal gland (Graf and Kastin, 1984), a
property that led us to study its effect and mechanism of
action in the rat pineal gland (Ouichou and Pévet, 1992;
Ouichou et al., 1992). Although it was previously shown
that in vivo DSIP inhibits AA-NAT activity and MEL
production to a small extent at the beginning of the
night (Graf et al., 1985; Oaknin et al., 1986), we have
observed that in vitro DSIP infusion of perifused rat
pineal glands induces a large, rapid, and dose-dependent
stimulation of the release of MEL as well as 5-ML and
5-HT. This stimulatory effect is independent of an in-
crease in cAMP levels. The effect of DSIP, however, is
abolished in presence of a peptidase inhibitor or the
TPOH inhibitor, pCPA. In addition, an infusion of Trp
on perifused pineal glands displays a similar stimula-
tion of MEL, 5-HT, and 5-ML release. These observa-
tions indicate that DSIP stimulates the synthesis and
release of the several pineal indoles via a “release” of Trp
(first amino acid in the DSIP sequence) generated by
proteolysis. The stimulatory effect of DSIP on MEL syn-
thesis (during the night) appears contradictory with its
sleep-promoting effect (during the day) in a nocturnal
animal. This ambiguity may be explained by its indirect
effect that may be delayed in the nighttime. Comparison
of DSIP effects in nocturnal and diurnal animals may
resolve this question.

10. Natriuretic Peptides. The natriuretic peptide
family is composed of three peptides: atrial (ANP), brain
(BNP), and C-type (CNP) natriuretic peptides (see
Imura et al., 1992 for review). They are associated with
a particular signal transduction system inducing the
synthesis of cGMP following activation of different mem-
brane receptors containing GC: mainly GC-A (binding
preferentially ANP and less BNP) and GC-B (binding
CNP). ANP and BNP are mainly secreted by the heart to
regulate blood pressure whereas CNP is mainly pro-
duced in the brain and in neuroendocrine organs.

In cultured rat pinealocytes ANP, BNP, and CNP
were reported to produce an increase in cGMP levels,
suggesting the presence of two types of receptors: GC-A
and GC-B (Olcese et al., 1994). Further studies in the rat
pineal gland, however, demonstrated a high density of
GC-B receptors (not GC-A), whose activation induced a
large increase in cGMP levels (Müller et al., 2000).
These observations, however, were not confirmed (Spes-
sert et al., 1992). The bovine pineal gland also expresses
GC-A and GC-B receptors, activation of which also in-
creases the intracellular concentration of cGMP (Mid-
dendorff et al., 1996). In addition, a small population of
bovine pineal cells contains CNP associated with synap-
tic vesicles, suggesting an autocrine/paracrine role for
this peptide in the pineal gland (Middendorff et al.,
1996). These findings indicate that the CNP/GC-B/
cGMP pathway may be of importance in pineal physiol-
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ogy, although the natriuretic peptides have no effect on
the synthesis and release of MEL (Olcese et al., 1994).
Pineal cGMP may be involved in the gating of an ion
channel (Schaad et al., 1995b) or in the activation of the
MAPK pathway (Ho et al., 1999). It is noteworthy also
that these peptides are able to modulate NAergic trans-
mission in the hypothalamus, especially by increasing
the uptake of NE and reducing spontaneous K�-induced
NE release (Vatta et al., 1996).

11. Angiotensin. As early as 1975, Haulica et al.
detected a high activity of renin, one of the enzymes
involved in the formation of angiotensin II (Ang II) from
angiotensinogen, in the mammalian pineal gland. Later,
Baltatu et al. (1998, 2002) reported that a local renin-
angiotensin system is present and functional in the rat
pineal gland. Angiotensinogen mRNA is localized in the
pineal astrocytes whereas the angiotensin receptor type
A1b is expressed in the pinealocytes, suggesting a para-
crine function of angiotensin within the pineal gland
(Baltatu et al., 1997, 1998). Both in vivo and in vitro
studies showed that the A1b receptor antagonist losar-
tan significantly reduces the synthesis of most pineal
indoles, in particular 5-HTP, 5-HT, and MEL, indepen-
dently of AA-NAT activity and probably in parallel with
a reduction in TPOH activity (Baltatu et al., 2002).
These observations are in agreement with earlier stud-
ies reporting a stimulatory effect of Ang II on 5-HT
synthesis (Haulica et al., 1980), on NE release, and
hydroxy and methoxyindole production (Finocchiaro et
al., 1990). Similarly, the regulation of melatonin synthe-
sis is also altered in transgenic rats either carrying an
additional mouse renin gene (Enzminger et al., 2001) or
with inhibited production of angiotensinogen (Baltatu et
al., 2002). These studies suggest that the pineal gland
has a local renin-angiotensin system with Ang II, syn-
thesized by the astrocytes, exerting a tonic activation of
TPOH activity. In addition, angiotensin-converting en-
zyme in the pineal gland is under negative control by NE
released from the pineal sympathetic nerves (Nahmod et
al., 1982).

12. Opiate Peptides. Opiates stem from three precur-
sor families: proopiomelanocortin (proopiomelanocortin,
giving the �-endorphins; MSH; and corticotrophin), pro-
Enk (giving Leu-Enk and Met-Enk), and prodynorphins
(giving the dynorphins A and B, and neoendorphins).

The pineal gland of several species contains fibers and
cells IR to various opiates. Fibers containing some opi-
ates, especially Leu-Enk and Met-Enk, �-endorphins,
and dynorphin, have been observed in the pineal gland
of the guinea pig (Schröder et al., 1988), human (Moore
and Sibony, 1988), cow (Cherdchu et al., 1989; Møller et
al., 1991a), European hamster (Coto-Montes et al.,
1994), and tree shrew (Phansuwan-Pujito et al., 1998).
The origin of these fibers is not known but could be the
SCG, habenular nuclei, trigeminal ganglia, or parasym-
pathetic ganglia (Schröder et al., 1988). In several spe-
cies, namely the guinea pig (Schröder et al., 1988), rat

(Aloyo, 1991), and European hamster (Coto-Montes et
al., 1994), cells of the pineal gland have been shown to
synthesize opiates, especially Enk. In the bovine pineal
gland most of opiate receptors are of the �-type and
fewer of the � subtype (Aloyo, 1992; Govitrapong et al.,
1992, 2002; Aloyo and Pazdalski, 1995). In mice, high
levels of mRNA coding for � opiate receptors have been
observed in the pineal and pituitary gland (Bzdega et al.,
1993). In contrast, only low levels of � and � opiate
receptor mRNA expression were found by RT-PCR in the
rat pineal gland (Chetsawang et al., 1999).

Most endorphins and Enk display a stimulatory effect
on MEL synthesis in vivo (Lissoni et al., 1986; Esposti et
al., 1988; Stankov et al., 1990a) and ex vivo (MEL:
Stankov et al., 1990a; AA-NAT: Govitrapong et al.,
1992). It has been proposed, however, that this opiate-
induced stimulation occurs via NAergic transmission
(Fraschini et al., 1989; Stankov et al., 1990a). In support
of this several in vitro studies were unable to show any
stimulatory effect of Met-Enk, Leu-Enk, or �-endorphin
on MEL synthesis (Kaneko et al., 1980; Simonneaux,
unpublished results). One study, however, has demon-
strated a positive effect of high concentrations of mor-
phine (�50 �M) on AA-NAT activity and MEL produc-
tion in the bovine pineal gland (Govitrapong et al., 1992,
1998).

The opiates are also considered to be the endogenous
ligands for the � receptors. These receptors were char-
acterized in the rat (with a high density: Jansen et al.,
1990) and sheep (Abreu and Sugden, 1990) pineal gland.
Two studies have shown contradictory results on the
effect of activation of these receptors on MEL synthesis.
One study has reported that the DA/� nonselective ag-
onist haloperidol inhibits NE-induced MEL release via
inhibition of cAMP production and PI turnover (Olcese,
1995). The other study, in contrast, has reported a stim-
ulatory effect of a �1 ligand on ISO-induced daytime
MEL production and on endogenous nighttime MEL
synthesis (Steardo et al., 1996).

An association between MEL/opiates/analgesia, espe-
cially the possibility that nocturnal endogenous MEL
has analgesic and hypnotic properties, has been dis-
cussed extensively by Fraschini et al. (1989) and Ebadi
et al. (1998).

�MSH is a 13-amino acid peptide thought to play a
special role in the mammalian pineal gland. High con-
centrations of �MSH (180 pg/gland in the rat) have been
found in the pinealocytes of several species (Oliver and
Porter, 1978; Vaudry et al., 1978; Pévet et al., 1980b;
Schröder et al., 1988) suggesting an auto/paracrine role
of this peptide in the pineal gland (Pévet et al., 1980b).
However, its role in the regulation of pineal metabolism
has not been clearly established. �MSH decreased the
NAergic stimulation of cAMP production in the rat pi-
neal gland (Sakai et al., 1976). In the Siberian hamster
an intraperitoneal injection of 200 ng �MSH induced a
decrease in 5-HT concentrations and AA-NAT activity,
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while higher concentrations (20 �g) decreased MEL se-
cretion without modification of AA-NAT activity (Oak-
nin et al., 1987). The role of this peptide would be inter-
esting to re-examine as it exhibits a day/night rhythm
with higher values peaking at the end of the night/
beginning of the day (ZT 1) that persists in D/D or after
SCGx (O’Donohue et al., 1980).

13. Luteinizing Hormone-Releasing Hormone. In the
historical context of the search for an anti or progona-
dotropic role of the pineal gland, the effects of peptides of
the hypothalamo-pituitary system have been studied in
the mammalian pineal gland (see White et al., 1974;
Pévet, 1981; for review; Noteborn et al., 1992; Park et
al., 1995). It is probable that some of these peptidergic
hormones are transported by the blood. Some of these
peptides, especially LHRH (Redding and Schally, 1973),
radioactively labeled and injected into the bloodstream,
accumulate in the pineal gland. In addition, the pres-
ence of LHRH-IR fibers was reported in the pineal gland
of the rat (Piekut and Knigge, 1981), dog (Matsuura et
al., 1983), and monkey (Ronnekleiv, 1988). In the dog
these fibers enter the pineal gland via the posterior and
habenular commissures. LHRH-IR neurons have been
observed in the habenular commissure and may send
fibers toward the pineal gland (Barry, 1979). Finally, it
has been proposed that some pineal cells synthesize
LHRH or a LHRH-like peptide (Pévet et al., 1980b).
Until now, few studies have reported an effect of this
peptide on pineal metabolism: it is proposed to stimulate
HIOMT activity (Cardinali et al., 1976; Cardinali and
Vacas, 1979), regulate the formation of granular vesicles
and the process of protein and/or peptide secretion (Hal-
dar-Misra and Pévet, 1983), and increase MEL secre-
tion, although only moderately (Mess et al., 1991),
mainly via an activation of AA-NAT (Hosaka et al.,
2002). Seasonal variations of LHRH have been observed
in the pineal gland of the rat (with a maximum in
March/May; Joseph, 1976) and sheep (King and Millar,
1981).

14. Peptides to Come. In the expanding field of pep-
tide research, new peptides that regulate/modulate sev-
eral functions are continually being discovered in the
central nervous system. From their localization and
function, some of these peptides appear to be good can-
didates to have a role in the regulation of biological
rhythms. For example, leptin, which is mostly involved
in the regulation of food intake (Caro et al., 1996) has
binding sites in the mouse pineal gland (Dal Farra et al.,
2000); apeline has receptors that are highly expressed in
the pineal gland and SCN (De Mota et al., 2000); ghrelin,
a peptide involved in the hypothalamic regulation of
energy homeostasis (Horvath et al., 2001) may also be a
possible candidate.

15. Conclusion: (Neuro)Peptides Are True Pineal
Transmitters. Since the 1980s, most studies on pineal
peptides have focused either on the immunocytochemi-
cal demonstration of their presence and origin in the

pineal gland or on their biochemical effects on MEL
synthesis (Table 1). All the preceding studies have
shown that several peptides of the pineal gland bind to
specific receptors to regulate some metabolic path-
way(s), especially synthesis of MEL (Table 1). The pre-
cise physiological role of these pineal peptides in the
regulation of MEL rhythmicity, however, remains to be
determined. The observations of daily and seasonal vari-
ations in their pineal content associated with specific
daily and seasonal modulation of pineal metabolism (for
example, the associated variations in NPY content and
HIOMT activity: Shinohara and Inouye, 1994; Møller et
al., 1998; Ribelayga et al., 1997, 1998c) support a phys-
iological function of these neuropeptides in the expres-
sion of the daily and annual MEL rhythms.

To evaluate their function in the pineal physiology, it
will be necessary to make timed correlations between
the presence/absence/variations of each peptide with a
particular situation of pineal metabolism and/or an as-
sociated physiological function, and then to prove cau-
sality. This will definitely require an expansion of stud-
ies to other species, especially those with marked
seasonal rhythms. For example, in the European ham-
ster, we have observed that seasonal variations in pineal
NPY-IR are associated in time with those of pineal
HIOMT activity and MEL and 5-ML concentrations
(Vivien-Roels et al., 1992; Møller et al., 1998; Ribelayga
et al., 1998c). These in vivo results are very important
because for the first time they point to a possible phys-
iological function of a neuropeptide in the mammalian
pineal gland.

In addition, in vivo microdialysis experiments with
local pineal infusion of neuropeptide agonists/antago-
nists or antisense molecules for neuropeptide receptors
should be continued to investigate the in vivo effect of
neuropeptides in physiological conditions. The confirma-
tion, by microdialysis, of a stimulatory effect of locally
infused VP on endogenous nocturnal MEL secretion
(Barassin et al., 2000) is a good example of our future in
vivo studies.

Finally, it will be necessary to determine the nature of
the information brought to the pineal gland by the pep-
tides. Do the peptides, like NE, bring photic information
about the environment or do they transmit complemen-
tary information about other nonphotic environmental
factors (temperature, humidity, food quality) or the
physiological state of the organism? At present it is not
possible to answer these questions. However, it should
be borne in mind that the concentrations of numerous
peptides of the central nervous system are modulated by
nonphotic environmental factors (for example, tempera-
ture, food availability). It is thus possible that some of
the peptides present in the pineal gland might represent
the anatomical and functional way by which nonphotic
stimuli reach and are integrated by the pineal gland
(Pévet et al., 1986, 1989a; Pévet, 1987).
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B. Other Nonadrenergic, Nonpeptidergic Transmitters
of the Pineal Gland

In addition to NE and peptides, the metabolic activity
of the pineal gland may be regulated by several other
neurotransmitters and hormones that have been made
the object of earlier reviews (Cardinali, 1979; Ebadi,
1984; Ebadi and Govitrapong, 1986; Cardinali et al.,
1987).

1. Serotonin. The pineal gland is characterized by high
intracellular levels of 5-HT stored, by vesicular mono-
amine type 1 transporter, in cytoplasmic vesicles in the
long branching processes of pinealocytes (Hayashi et al.,
1999).

The 5-HT content in the pinealocytes has generally
only been considered as cellular stock used as a sub-
strate for the synthesis of MEL (Mefford et al., 1983;
Klein, 1985) because it exhibits a daily rhythm (90 ng/
gland during the day and 10 ng/gland at night in the rat;
Quay, 1963) opposite to that of MEL. While this function
of 5-HT is important, it may not be its only role. Indeed,
comparison of the daily MEL and 5-HT rhythms shows,
especially at the day/night and night/day transitions,
that these two indoles do not vary in a strict opposition
in the rat (McNulty et al., 1986), Syrian hamster
(Miguez et al., 1995a), Siberian hamster (Miguez et al.,
1996), and European hamster (Pévet et al., 1989b). The
concentration of 5-HT in the pineal gland decreases
markedly at the beginning of the night before AA-NAT
activation and MEL release. In addition, in the rat pi-
neal gland the nocturnal decrease in 5-HT (80 ng/gland)
is far larger than the nocturnal increase in MEL (1
ng/gland).

Several studies have reported that 5-HT is also a
secretory product of the pinealocytes (Shein et al., 1967;
Walker and Aloyo, 1985; Chuluyan et al., 1989; Miguez
et al., 1997). Furthermore, using pineal microdialysis, it
has been shown that 5-HT is released in the pineal
extracellular medium during the day with a significant
increase at the beginning of the night followed by a
marked decrease later in the night (Azekawa et al.,
1991; Sun et al., 2002). These observations, suggesting
that pineal 5-HT may display auto/paracrine effects on
pineal metabolism, have triggered several studies to
elucidate the mechanisms regulating 5-HT release and
the role of 5-HT in the rat pineal gland (Sugden, 1990a;
Olcese and Münker, 1994; Miguez et al., 1997). We have
found that there is a high basal release of 5-HT (approx-
imately 10 to 15 ng/h/7 � 104 pineal cells) compared to
that of MEL (0.1 to 0.2 ng/h/7 � 104 pineal cells) in
cultured pineal cells (Miguez et al., 1997). This is related
to high basal TPOH activity since the 5-HT release was
strongly inhibited by p-CPA, a TPOH inhibitor. Inter-
estingly, p-CPA also markedly decreased intracellular
5-HT levels, demonstrating that the latter does not con-
stitute a “passive cellular stock” to be used for MEL
synthesis, but a “transitory stock” in constant renewal

that is depleted if the synthesis of 5-HT stops. In addi-
tion, we have observed that when 5-HT synthesis is
inhibited by p-CPA, MEL synthesis and release are sig-
nificantly reduced, even though the intracellular 5-HT
levels are still sufficient. These results corroborate in
vivo experiments using a similar TPOH inhibition (King
et al., 1984).

NE increases 5-HT release via activation of both �1-
and �1-AR. Activation of �1-AR-induces a Ca2�-depen-
dent exocytosis of 5-HT per se (Aloyo and Walker, 1987,
1988; Sun et al., 2002; Yamada et al., 2002) and a �1-
AR-induced synthesis and release (Olcese and Münker,
1994; Miguez et al., 1997). The latter result is in agree-
ment with the observation that TPOH activity is in-
creased by administration of a �1-AR agonist (Ehret et
al., 1991). The in vitro release of 5-HT from stimulated
rat pinealocytes depends on the metabolic orientation of
5-HT that depends on the level of AA-NAT activity: with
moderate �1-AR stimulation, the synthesis and release
of both 5-HT and MEL are increased; following strong
�1-AR stimulation, the intracellular levels and release of
5-HT are markedly decreased while MEL synthesis and
release are maximal (Miguez et al., 1997). These in vitro
results are in agreement with the observations found
using pineal microdialysis (Azekawa et al., 1991; Sun et
al., 2002), namely that extracellular 5-HT levels are
high during the day, further increased at the beginning
of the night, and then markedly decreased during the
night because of a major mobilization of 5-HT for MEL
synthesis. This triphasic rhythm in 5-HT release is cir-
cadian and depends on the NAergic input (Sun et al.,
2002).

The putative role of extracellular 5-HT on pineal met-
abolic activity has been examined. Early studies showed
that part of the 5-HT released into the extracellular
medium was taken up by the sympathetic nerve endings
to be oxidized into 5-HIAL and then metabolized into
5-MIAA and 5-ML in the pinealocytes (Neff et al., 1969;
Jaim-Etcheverry and Zieher, 1983; Masson-Pévet and
Pévet, 1989). In addition, extracellular 5-HT potentiates
MEL secretion induced by �1-AR stimulation (Sugden,
1990a; Olcese and Münker, 1994; Miguez et al., 1997).
We have proposed that this effect may be mediated by
activation of 5-HT2 receptors, although the 5-HT2 ago-
nist/antagonist concentrations used to obtain a signifi-
cant effect were quite high (up to 10 �M; Miguez et al.,
1997). This 5-HT2 receptor was first characterized in the
bovine pineal gland (Govitrapong et al., 1991) and was
recently proposed to be of the 5HT2c subtype in the rat
pineal gland (Steardo et al., 2000). It would be of interest
to confirm these results by studying the second messen-
gers theoretically induced by 5-HT2 receptor activation,
namely Ca2� and IP3. In support of this it has been
reported that 5-HT could induce Ca2� influx in bovine
pinealocytes (Cardinali et al., 1991).

In addition to intracellular 5-HT, the rat pineal gland
contains 5-HT-containing nerve fibers arising from the
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raphe nuclei (Leander et al., 1998). This observation is
in agreement with earlier reports showing that after
SCGx a number of 5-HT fibers remain in the pineal stalk
(Korf and Møller, 1985; Matsuura et al., 1994).

What could the physiological importance of a 5-HT
positive autocrine effect be? In the rat pineal gland
extracellular 5-HT concentrations increase at the begin-
ning of the night (Azekawa et al., 1991; Sun et al., 2002)
when NAergic stimulation is probably still moderated.
This transient increase could help to increase the noc-
turnal stimulation of MEL synthesis. However, it should
be noted that while a nocturnal injection of a 5HT2C
agonist enhances MEL synthesis, a nocturnal injection
of a 5HT2C antagonist has no effect, indicating a phasic
rather than a tonic effect of 5-HT on MEL synthesis
(Steardo et al., 2000). In addition, 5-HT could have other
effects, especially on pineal vascular flow rate. A presyn-
aptic effect on NE release could also be considered since
5-HT has been reported to display presynaptic effects on
neurotransmission in the hippocampus (Matsumoto et
al., 1995) and SCN (Pickard et al., 1999).

2. Dopamine. Some observations indicate that DA is
not only the precursor of NE, but also a true pineal
neurotransmitter. TH-IR and DA �-hydroxylase immu-
nonegative fibers exist in the pineal gland (Jin et al.,
1988). In addition, DA concentrations display a marked
daily rhythm with higher nocturnal values in the rat,
cow, Siberian hamster, and Syrian hamster (Fujiwara et
al., 1980; Govitrapong et al., 1989a; Hermes et al., 1994;
Miguez et al., 1995a, 1996). Furthermore, after SCGx,
TH activity and DA are still detectable in the rat pineal
gland (Hernandez et al., 1994). In isolated membranes of
the bovine pineal gland, a high density of typical subtype
1 DA receptor (D1-R) (positively coupled to AC) has been
characterized (Simonneaux et al., 1990a). The bovine
pineal gland also contains typical subtype 2 DA recep-
tors (D2-R) (negatively coupled to AC) although with a
lower density (Govitrapong et al., 1984). In this species
the density of D1-R is markedly higher (6- to 20-fold)
than the density of �1-AR, �1-AR, and D2-R (Simon-
neaux et al., 1991b), suggesting an important role for DA
in the regulation of pineal metabolic activity. Biochem-
ical studies performed in cultured rat pineal glands have
shown that DA displays an inhibitory effect at low con-
centrations (0.1 �M) and a stimulatory effect at high
concentrations (10 �M) on AA-NAT activity and MEL
release (Axelrod et al., 1969; Govitrapong et al., 1989a),
probably related to the presence of the two subtypes of
DA receptors. A recent report shows that DA may inter-
fere with �1-AR to induce Ca2� signaling in the rat
pineal gland (Rey et al., 2001). The presence of DA-
containing fibers, the identification of specific DA recep-
tors, and the demonstration of biochemical effects of DA
suggest that DA may be a pineal neurotransmitter
whose physiological role remains to be established.

3. Acetylcholine. Cholinergic fibers have been iden-
tified in the pineal gland of several mammals (see

Romijn, 1973; David and Kumar, 1978; Phansuwan-
Pujito et al., 1990, 1991b, 1999 for reviews). The origin of
these pineal cholinergic fibers may be the habenular
nucleus or peripheral parasympathetic (pterygopalatine
or otic) ganglia. In addition, some cells of the pineal
gland (nervous cells and/or pinealocytes) synthesize
ACh (Romijn, 1975; Wessler et al., 1997; Phansuwan-
Pujito et al., 1999). The ACh content of the pineal gland
exhibits a marked daily rhythm with nighttime values
being 10- to 20-fold higher than daytime values (Wessler
et al., 1997).

The characterization of cholinergic receptors in the
pineal gland of some mammals strengthens the idea of
parasympathetic modulation of pineal metabolic activ-
ity. High-affinity muscarinic receptors (mACh-R) have
been characterized in the pineal gland of the rat, sheep,
and cow (Taylor et al., 1980; Finocchiaro et al., 1989;
Govitrapong et al., 1989b). The presence of nicotinic
receptors (nACh-R) has also been demonstrated by im-
munocytochemistry (in 25% of pineal cells: Reuss et al.,
1992b), by autoradiography (Stankov et al., 1993), and
by in situ hybridization (indicating the �3�2 composition
of the nACh-R; Wada et al., 1989; Yeh et al., 2001).

Various postsynaptic effects of activation of mACh-R
have been postulated: stimulation of 5-HT synthesis and
release without any effect on MEL (Finocchiaro et al.,
1989); stimulation of PI hydrolysis and MEL production
(2-fold) via cAMP-independent mechanisms (Laitinen et
al., 1989, 1992); inhibition of AA-NAT activity (Phansu-
wan-Pujito et al., 1991a); increase in the number of
pineal synaptic ribbons (Gupta et al., 1991), and an
increase in Ca2�

i (Marin et al., 1996). The main effect of
mACh-R activation, however, probably occurs at the pre-
synaptic level. A presynaptic effect was first postulated
following the observation of an effect of ACh on the
whole pineal gland but not on cultured pinealocytes
(Laitinen et al., 1995). This hypothesis has now been
confirmed by pineal microdialysis showing that carba-
chol inhibits the production of NAS and MEL via pre-
synaptic inhibition of NE release (Drijfhout et al.,
1996a).

Activation of the postsynaptic nACh-R induces, in a
large majority of rat pinealocytes, Ca2� influx via L-type
Ca2� channels following membrane depolarization
(Schomerus et al., 1995; Letz et al., 1997). In addition, it
has been shown that nicotine has no effect by itself but
inhibits NE-induced MEL secretion (Stankov et al.,
1993). It has been proposed that nACh-R-induced cell
depolarization leads to the release of Glu from pineal
microvesicles (MV), which in turn inhibits the secretion
of MEL (Kus et al., 1994; Letz et al., 1997; Yamada et al.,
1998b; see below). Interestingly, recent studies reported
a developmental switch from rat pineal mAChR to
nAChR around the third week of life with the parallel
appearance of L-type Ca2� channels (Schomerus et al.,
1999; Wagner et al., 2000). In adult bovine pineal cells
activation of either nACH-R or mACh-R induces an in-
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crease in intracellular level of Ca2�, but with no appar-
ent effect of basal or NE-induced AA-NAT activity and
MEL synthesis (Schomerus et al., 2002).

In summary, parasympathetic input would therefore
exert a tonic inhibition on pineal activity, on the one
hand via presynaptic inhibition of NE release and, on
the other hand, via postsynaptic activation of the inhib-
itory intrapineal Gluergic system.

4. Glutamate. Glu, usually considered to be an exci-
tatory amino acid, is present in the pineal gland at high
concentrations (1.2 mg/g rat pineal). It is mainly local-
ized in pinealocytes, associated with MV (the endocrine
counterpart of synaptic vesicles), but it has also been
found in glial cells and fibers whose origin is unknown
(McNulty et al., 1992; Redecker and Veh, 1994). It has
been suggested that the pineal Glu concentration is
partly controlled by NE (McNulty et al., 1992). The
transport of Glu in MV and its effect on pineal metabolic
activity has been well studied in several mammals (Go-
vitrapong and Ebadi, 1988; McNulty et al., 1992; Kus et
al., 1993, 1994; Redecker and Veh, 1994; van Wyk and
Daya, 1994; Moriyama and Yamamoto, 1995a,b;
Yamada et al., 1996a,b, 1997b, 1998a,b). Glu is taken up
into both pinealocytes (Yamada et al., 1997b) and inter-
stitial cells (Redecker and Pabst, 2000) mainly via a type
1 Na�-dependent Glu transporter and then stored in MV
via the synaptic vesicle protein of type 2 (SV2B, Hayashi
et al., 1998). Following cell depolarization, Glu is re-
leased by exocytosis via Ca2�-dependent mechanisms.
The endogenous transmitter responsible for depolariza-
tion-induced Glu release could be ACh acting via
nACh-R (Letz et al., 1997; Yamada et al., 1998a). Extra-
cellular Glu inhibits AA-NAT activity and MEL secre-
tion induced by NAergic stimulation. In the rat pineal
gland the binding site for Glu is a class II metabotropic
Glu receptor of type 3 (mGluR3) coupled to a Gi protein
responsible for the cAMP-dependent decrease in AA-
NAT activity and MEL synthesis (Yamada et al., 1998b).
The class I mGluR5 receptor is also present in pineal
cells and triggers Ca2� efflux from intracellular stores
(Yatsushiro et al., 1999; Pabst and Redecker, 1999).
Other ionotropic Glu receptors have also been reported
in the pineal glands of several species (Sato et al., 1993;
Govitrapong et al., 1986; Mick, 1995; Yatsushiro et al.,
2000). In the rat pineal gland GluR1 is functionally
expressed in pinealocytes and may participate in a
Ca2�-signaling cascade that enhances and expands the
Gluergic signal throughout the pineal gland (Yatsushiro
et al., 2000). Glu has also been proposed to inhibit
HIOMT activity, but not HIOMT mRNA (Ishio et al.,
1999). It is interesting to note that Glu also activates
NOS in several tissues and could therefore be involved
in cGMP synthesis. In addition, it has been shown that
Glu can regulate the presynaptic release of NE (Wang et
al., 1992).

Apart from Glu, L-aspartate is present in high concen-
trations in the rat pineal gland; it is released together

with Glu during exocytosis and inhibits the NE-induced
increase in AA-NAT activity and MEL synthesis
(Yamada et al., 1997a; Yatsushiro et al., 1997). Of any
mammalian tissue, the highest concentrations of D-as-
partate occur in the pineal gland (Imai et al., 1995; Lee
et al., 1997; Schell et al., 1997). D-aspartate is actively
taken up by the pineal cells and then released upon
NE-stimulation, where it strongly inhibits the NE-in-
duced increase in AA-NAT activity and MEL synthesis
(Ishio et al., 1998; Takigawa et al., 1998). In addition to
Glu and aspartate, cultured pinealocytes also release
glycine upon stimulation with depolarizing concentra-
tions of KCl (Redecker et al., 2001).

These data show that the amino acid Glu (and possi-
bly aspartate) is probably an important auto/paracrine
transmitter involved in the regulation of MEL synthesis
in the pineal gland. In vitro, it appears to be released
upon ACh stimulation and inhibits NE-induced MEL
synthesis. In addition, the glutamatergic communica-
tion in the pineal gland may enable paracrine cross-talk
among pinealocytes as well as interactions between pi-
nealocytes and interstitial cells. Additional in vivo ex-
periments are now needed to clarify the exact role of this
amino acid negative loop in the regulation of MEL syn-
thesis.

5. GABA. GABA, an inhibitory neurotransmitter, is
present in the pineal gland of several mammals where it
is considered to be an intrapineal transmitter with para-
crine effects (Ebadi and Chan, 1980; Ebadi and Govit-
rapong, 1986; Rosenstein et al., 1989a,b, 1990, 1991).
The immunodetection of GABA transporters (GAT 1–3)
in pinealocytes, and to a lesser extent in interstitial
cells, together with the GABA synthesizing enzyme con-
firms the paracrine function of GABA in the gerbil pi-
neal gland (Redecker, 1999). GABA has also been ob-
served in the pinealopetal fibers that remain after SCGx
and seen passing through the posterior and habenular
commissures and the deep pineal gland, both observa-
tions indicating a central origin of this innervation (Sa-
kai et al., 2001).

Typical A-type (GABAA-R) and B-type (GABAB-R)
GABA receptors have been identified in the pineal
gland. In the rat pineal gland, GABA inhibits NE-in-
duced MEL synthesis via GABAA-R and inhibits the NE
release via GABAB-R (Rosenstein et al., 1989a, 1990). In
the bovine pineal gland GABA decreases NAergic stim-
ulation of AA-NAT activity, increases Cl� flux, and de-
creases 5-HT release (Ebadi and Chan, 1980; Rosenstein
et al., 1989b). In the sheep pineal gland, GABA also
inhibits the NE-induced increase of AA-NAT activity
(Foldes et al., 1984). The quantity of GABA in the pineal
gland of the rat (Waniewski and Suria, 1977) and Syrian
hamster (Kanterewicz et al., 1993) exhibits a daily vari-
ation with higher nighttime values.

6. Taurine. Taurine is an amino acid that displays
high concentrations in the pineal gland (LaBella et al.,
1968; McNulty et al., 1992). Its release from the pineal
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gland is stimulated by NE (Wheler and Klein, 1980).
Taurine stimulates AA-NAT activity and MEL synthe-
sis, but this effect may not be specific because it can be
inhibited by the �1-AR antagonist, PROP (Wheler et al.,
1979).

7. Histamine. Pineal gland of various mammalian
species contains histamine (Quay, 1974). The rat pineal
gland is moderately innervated by histaminergic fibers
of central origin (Mikkelsen et al., 1992). Histaminergic
neurons of the tuberomammillary nucleus of the poste-
rior hypothalamus project via the posterior commissure
to the deep pineal gland, the pineal stalk, then to the
proximal part of the superficial pineal gland. In the
chicken, histamine is a powerful stimulator of cAMP
(Nowak et al., 1997), but in the rat no effect has been
observed on AA-NAT activity (Buda and Klein, 1978) or
the metabolism of PI (Muraki, 1972). The possibility
that a metabolite of histamine may have an effect needs
to be considered, since enzymes involved in the metab-
olism of this amine are present at high concentration in
the pineal gland (Quay, 1974). In addition, a presynaptic
effect of histamine on the release of a neurotransmitter,
especially NE, is possible (Hill, 1990; Yamazaki et al.,
2001).

8. Adenosine and ATP. In the autonomic nervous
system, ATP is coreleased with NE (Burnstock, 1976). In
the rat pineal gland, NE release is accompanied by a
release of ATP that is subsequently metabolized into
adenosine by the pineal cells (Nikodijevic and Klein,
1989). ATP and its metabolite adenosine exert their
effect via two main families of purine receptors: P1-type
receptor (P1-R; former nomenclature grouping the A1,
A2a, A2b, and A3 adenosine receptor subtypes) coupled to
G-proteins and P2-type receptors (P2-R; specific receptor
to ATP) including P2X-R (ligand-gated ion channels) and
P2Y-R (G-protein-coupled). In the rat pineal gland acti-
vation of adenosine receptors elevates cAMP levels
(Sarda et al., 1989) and increases AA-NAT activity and
MEL synthesis (Gharib et al., 1989; Nikodijevic and
Klein, 1989; Vacas et al., 1989; Ferreira et al., 1994). In
addition, ATP binds to P2Y-R to activate PLC and there-
fore potentiates the NE-induced synthesis of MEL
(Gharib et al., 1992; Stehle et al., 1992; Nicholls et al.,
1997; Mortani Barbosa et al., 2000; Ferreira and
Markus, 2001). The sheep pineal gland is reported to
possess adenosine receptors, activation of which induces
different effects on MEL synthesis according to the dose
of agonist (Falcon et al., 1997).

9. Nitric Oxide. NO is a diffusible neurotransmitter
implicated in a variety of neuroendocrine processes.
Three isoforms of the synthesizing enzyme NOS have
been described: type I is neuronal, Ca2�-dependent, and
not inducible; type II is Ca2�-independent and inducible;
type III is the endothelial isoform (Jacobs et al., 1999).

NO is synthesized in the sympathetic fibers innervat-
ing the pineal gland of sheep (high density of neuronal
NOS; Lopez-Figueroa et al., 1996) and rat (presence of

NADPH-diaphorase activity; Lopez-Figueroa and
Møller, 1996). NO is also synthesized in nonsympathetic
(VIPergic) fibers of the sheep and rat pineal gland
(Lopez-Figueroa and Møller, 1996; Lopez-Figueroa et
al., 1997). In addition, neuronal NOS is present in the
rat (Lin et al., 1994; Schaad et al., 1994, 1995a; Lopez-
Figueroa and Møller, 1996) and cow (Maronde et al.,
1995) pinealocytes (but not in the sheep: Lopez-Figueroa
et al., 1996). Although NO appears to be synthesized
only in a small subpopulation of pineal cells, it is
thought to be an intercellular messenger acting on all
pineal cells (Spessert et al., 1998). Pineal NOS expres-
sion and activity are regulated by NE in the long-term/
photoperiodic range (see Section V.A.7.; Schaad et al.,
1994; Jacobs et al., 1999; Spessert and Rapp, 2001). In
addition, NOS activity, measured by NADPH-diapho-
rase activity, is present in the endothelial cells of the
pineal blood vessels (Lopez-Figueroa and Møller, 1996;
Lopez-Figueroa et al., 1996).

Different roles of the diffusible factor on pineal activ-
ity have been suggested. NO is involved in NE-induced
cGMP synthesis (see Section V.A.2.; Spessert et al.,
1993; White and Klein, 1993; Lin et al., 1994). In addi-
tion, NO could be involved in the release of neurotrans-
mitters such as VIP and NE, as already shown in some
tissues (Lonart et al., 1992). However, we did not ob-
serve any significant effect of NO donors or NOS inhib-
itors on the presynaptic release of NE (Simonneaux and
Schaad, unpublished results). NO could also be involved
in the regulation of pineal blood flow (most VIPergic
fibers end in pineal perivascular spaces; NO is known to
display vasorelaxant effects, similar to VIP; and NOS
activity has been measured in the endothelium of blood
vessels in the sheep and rat pineal gland). Finally, ex-
ogenous NO is reported to be a powerful inhibitor of
MEL synthesis in the rat and bovine pinealocytes
(Maronde et al., 1995) via cGMP-independent mecha-
nisms that remain to be determined. Similarly, the spon-
taneous electrical activity of rat pinealocytes is inhibited
by exogenous NO (Schenda and Vollrath, 1997).

10. Gonadal Steroids. Endogenous MEL is involved
in the regulation of reproductive function of photoperi-
odic species (Reiter, 1980, 1993). Interestingly, gonadal
steroids may exhibit a feedback effect on the pineal
gland (see Cardinali, 1979 for review).

The pineal gland specifically accumulates estradiol
and testosterone (Nagle et al., 1972, 1974) and contains
nuclear binding sites for estradiol, testosterone (Cardi-
nali, 1977; Cardinali et al., 1983; Moeller et al., 1984),
5�-dihydrotestosterone (Cardinali et al., 1974a; Gupta
et al., 1993) and progesterone (Vacas et al., 1979). The
number of cytoplasmic estrogen receptors and translo-
cation of the hormone/receptor complex to the nucleus
are partly regulated by NE (Cardinali et al., 1975, 1983)
and 5�-dihydrotestosterone receptor expression is in-
creased by NE (Gupta et al., 1993).
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Large changes in sex steroid levels alter pineal me-
tabolism, and these effects are different in males and
females (Hamill et al., 1984; Hernandez et al., 1990;
Alonso et al., 1995; Yie and Brown, 1995). In general,
testosterone exhibits stimulatory effects and castration
reduces cAMP concentrations (Karasek et al., 1978),
AA-NAT activity (Rudeen and Reiter, 1980), and MEL
synthesis (Hernandez et al., 1990). In contrast, estradiol
displays an inhibitory effect on the �1/�1-AR-induced
increase in cAMP and Ca2�

i levels, AA-NAT activity,
and MEL production in female rats, while ovariectomy
leads to a significant increase in the cAMP/AA-NAT/
MEL pathway (Moujir et al., 1990a; Okatani et al., 1997,
1998; Hayashi and Okatani, 1999; Ishizuka et al., 2000;
Hernandez-Diaz et al., 2001). Similarly, an increase in
nocturnal MEL secretion (associated with an increase in
AA-NAT but not HIOMT activity) was observed during
menopause in relation to the existence of a low estrogen
environment in the rat (Okatani et al., 1999) and human
(Okatani et al., 2000). It should be noted, however, that
in the female guinea pig, in contrast to the rat, physio-
logical doses of estradiol (10 to 100 nM) increased cAMP
accumulation and MEL release (Cardinali et al., 1986).
Progesterone injection for 2 weeks did not produce any
significant change in MEL (Okatani et al., 1997). The
putative effect of the sex steroids on HIOMT activity is
controversial. In female rats, a number of studies re-
ported no effect on HIOMT activity (Yuwiler, 1985, 1989;
Okatani et al., 1998, 1999), whereas others found vari-
ous effects (Wurtman et al., 1965; Alexander et al., 1970;
Houssay and Barcelo, 1972; Nagle et al., 1972; Preslock,
1977). One of the first in vitro studies showed that
HIOMT activity in castrated female rats was stimulated
(in 2 h) by physiological doses of estradiol, an effect that
was abolished in the presence of RNA and protein syn-
thesis inhibitors (Mizobe and Kurokawa, 1976). In male
rats, castration decreased and testosterone increased
HIOMT activity (Nagle et al., 1974). Progesterone inhib-
its HIOMT activity and MEL secretion (Cardinali et al.,
1976, 1986) but this finding remains controversial
(Alonso et al., 1993).

Until now it has been difficult to evaluate the effect(s)
of endogenous gonadal steroids on pineal metabolism
because of the high interanimal variations. In vivo vari-
ations in the activity of the pineal gland depending on
the female sexual cycle have been observed in several
species: rat (Quay, 1963; Wurtman et al., 1965; Ozaki et
al., 1978), sheep (Cardinali et al., 1974b), mole (Pévet
and Smith, 1975), human (Wetteberg et al., 1976; Parry
et al., 1990), squirrel (Ellis and Balph, 1976), and pony
(Wesson et al., 1979), with no consistent pattern accord-
ing to the estrous stage. In addition, the effect of large
changes in steroid levels following gonadal suppression
or steroid injections are not considered to be physiolog-
ically relevant. Therefore, we recently performed a de-
tailed analysis of AA-NAT and HIOMT gene expression
and enzyme activity and MEL content and release in the

pineal gland of female rats throughout the estrous cycle.
We found no estrous stage-dependent differences in pi-
neal AA-NAT and HIOMT gene expression and activity
or in the MEL content. This was confirmed by a 5- to
6-consecutive-day pineal microdialysis of cycling female
rats where none of the animals showed a significant
variation in endogenous melatonin release with differ-
ent estrous stages (Skorupa et al., 2003).

The above data suggest that the MEL rhythm is not
altered by the estrous cycle in normal female rats. How-
ever, marked changes in the circulating steroid levels
(steroid injection, castration, menopause) have been re-
ported to alter MEL synthesis and release.

VII. General Conclusions and Perspectives

The present review outlines the extraordinary capac-
ity of the pineal gland to integrate numerous hormonal
and neural messages via several signal transduction
pathways. It has been proven, at least in the rat, that
the SCN clock-driven nocturnal NAergic stimulation is
essential for the generation of the circadian rhythm of
pineal MEL synthesis and release. Other (neuro)trans-
mitters are present in the pineal gland to refine this
NAergic input. We have shown that this is an important
function for some of the neuropeptides present in the
pineal gland. However, to date most of these studies
have been performed in vitro and/or in an acute experi-
ment. Evaluation of the role of these non-NAergic pineal
transmitters in in vivo conditions is thus definitely
needed. The development of new technologies will soon
allow the necessary in vivo investigations. Future stud-
ies should focus on characterization of 1) the endogenous
release and effects of the various pineal transmitters (for
example, using pineal microdialysis, in vivo infusion of
specific antisense oligonucleotides, or genetically modi-
fied animals); and 2) the mechanisms involved in the
photoperiodic/seasonal plasticity displayed by the pineal
gland (seasonal plasticity of the neural pathways affer-
ent to the pineal gland, analysis of seasonal variation in
gene expression using the microarray technology, and
use of genetically modified animals). The use of these
tools will first require a better knowledge of the genome
of photoperiodic rodents, for example, hamsters. This
development is now technically possible and promises to
open an exciting new approach to our understanding of
how seasonal information is integrated to shape the
MEL message and subsequently control the physiology
of the entire organism.
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Besançon R, Simonneaux V, Jouvet A, Belin MF, and Fèvre-Montange M (1996)
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Buijs RM and Pévet P (1980) Vasopressin and oxytocin-containing fibres in the
pineal gland and subcommissural organ of the rat. Cell Tissue Res 205:11–17.

Buijs RM, Swaab DF, Dogterom J, and van Leeuwen FW (1978) Intra- and extra-
hypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res
186:423–433.

Buijs RM, Wortel J, and Hou YX (1995) Colocalization of gamma-aminobutyric acid
with vasopressin, vasoactive intestinal peptide and somatostatin in the rat supra-
chiasmatic nucleus. J Comp Neurol 358:343–352.

Buijs RM, Wortel J, van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, Romijn HJ,
and Kalsbeek A (1999) Anatomical and functional demonstration of a multisyn-
aptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11:1535–
1544.

Burke Z, Wells T, Carter D, Klein DC, and Baler R (1999) Genetic targeting: the
serotonin N-acetyltransferase promoter imparts circadian expression selectively
in the pineal gland and retina of transgenic rats. J Neurochem 73:1343–1349.

Burnstock G (1976) Purinergic receptors. J Theor Biol 62:491–503.
Bzdega T, Chin H, Kim H, Jung HH, Kozak CA, and Klee WA (1993) Regional

expression and chromosomal localization of the delta opiate receptor gene. Proc
Natl Acad Sci USA 90:9305–9309.

Cahill GM and Besharse JC (1995) Circadian rhythmicity in vertebrate retinas:
regulation by a photoreceptor oscillator. Prog Ret Eye Res 14:267–291.

Card JP and Moore RY (1982) Ventral lateral geniculate nucleus efferents to the rat

suprachiasmatic nucleus exhibit avian pancreatic polypeptide-like immunoreac-
tivity. J Comp Neurol 206:390–396.

Card JP and Moore RY (1989) Organization of lateral geniculate-hypothalamic
connections in the rat. J Comp Neurol 284:135–147.

Cardinali DP (1977) Nuclear receptor estrogen complex in the rat pineal gland.
Modulation by sympathetic nerves. Neuroendocrinology 24:333–346.

Cardinali DP (1979) Hormone effects on the pineal gland, in The Pineal Gland:
Anatomy and Biochemistry (Reiter RJ ed) vol 1, pp 243–272, CRC Press, Boca
Raton.

Cardinali DP, Gejman PV, and Ritta MN (1983) Further evidence of adrenergic
control of translocation and intracelluar levels of estrogen receptors in rat pineal
gland. Endocrinology 112:492–498.

Cardinali DP, Nagle CA, Freire F, and Rosner JM (1975) Effects of melatonin on
neurotransmitter uptake and release by synaptosome-rich homogenates of the rat
hypothalamus. Neuroendocrinology 18:72–85.

Cardinali DP, Nagle CA, and Rosner JM (1974a) Metabolic fate of androgens in the
pineal organ. Uptake, binding to cytoplasmic proteins and conversion of testoster-
one into 5�-reduced metabolites. Endocrinology 95:179–187.

Cardinali DP, Nagle CA, and Rosner JM (1974b) Changes in the pineal indole
metabolism and plasma progesterone levels during the estrous cycle in ewes.
Steroids Lipids Res 5:308.

Cardinali DP, Nagle CA, and Rosner JM (1976) Gonadotrophin- and prolactin-
induced increase in rat pineal hydroxyindole-O-methyltransferase. Involvement of
the sympathetic nervous system. J Endocrinol 68:341–347.

Cardinali DP, Rosenstein HR, Chuluyan HE, and Vacas MI (1991) Regulation of
melatonin synthesis and release in mammalian pineal gland, in Role of Melatonin
and Pineal Peptides in Neuroimmunology (Fraschini F and Reiter RJ eds) pp
47–56, Plenum Press, New York.

Cardinali DP and Rosner JM (1971) Metabolism of serotonin by the rat retina in
vitro. J Neurochem 18:1769–1770.

Cardinali DP and Vacas MI (1979) Norepinephrine turnover in pineal gland and
superior cervical ganglia. Changes after gonadotrophin administration to cas-
trated rats. J Neural Transm 45:273–279.

Cardinali DP, Vacas MI, Gonzales Solveyra C, Keller Sarmiento MI, and Vollrath L
(1986) In vitro effects of estradiol, testosterone, and progesterone on 5-methoxy-
indole content, cyclic adenosine 3�,5�-monophosphate synthesis and norepineph-
rine release in differents parts of the female guinea pig pineal complex. J Pineal
Res 3:351–363.

Cardinali DP, Vacas MI, Rosenstein RE, Etchegoyen GS, Sarmiento MIK, Solveyra
CG, and Pereyra EN (1987) Multifactorial control of pineal melatonin synthesis:
an analysis through binding studies, in Advances in Pineal Research (Reiter RJ
and Fraschini F eds) vol. 2 pp 51–66, John Libbey and Co Ltd, London.

Cardinali DP and Wurtman RJ (1972) Hydroxyindole-O-methyltransferases in rat
pineal, retina and Harderian gland. Endocrinology 91:247–252.

Carlson LL, Weaver DR, and Reppert SM (1989) Melatonin signal transduction in
hamster brain: inhibition of adenylyl cyclase by a pertussis toxin-sensitive G
protein. Endocrinology 125:2670–2676.

Carneiro RCG, Toffoleto O, Cipolla-Neto J, and Markus RP (1994) Modulation of
sympathetic neurotransmission by melatonin. Eur J Pharmacol 257:73–77.

Caro JF, Sinha MK, Kolaczynski JW, Zhang PL, and Considine RV (1996) Leptin: the
tale of an obesity gene. Diabetes 45:1455–1462.

Carter DA (1990) Temporally defined induction of c-fos in the rat pineal. Biochem
Biophys Res Commun 166:589–594.

Carter DA (1992) Neurotransmitter-stimulated immediate-early gene responses are
organized through differential postsynaptic receptor mechanisms. Mol Brain Res
16:111–118.

Carter DA (1993a) Up-regulation of �1-adrenoceptor messenger ribonucleic acid in
the rat pineal gland: nocturnally, through a �-adrenoceptor-linked mechanism and
in vitro, through a novel posttranscriptional mechanism activated by specific
protein synthesis inhibitors. Endocrinology 133:2263–2268.

Carter DA (1993b) Noradrenergic regulation of c-jun expression in the rat pineal
gland in culture: positive and negative components. Eur J Pharmacol 247:97–100.

Carter DA (1993c) Differential intracellular mechanisms mediate the coordinate
induction of c-fos and jun-B in the rat pineal gland. Eur J Pharmacol 244:285–291.

Carter DA (1994) A daily rhythm of activator protein-1 activity in the rat pineal is
dependent upon trans-synaptic induction of JunB. Neuroscience 62:1267–1278.

Carter DA (1997) Rhythms of cellular immediate early gene expression: more than
just an early response. Exp Physiol 82:237–244.

Carter DS and Goldman BD (1983) Antigonadal effects of timed melatonin infusion
in pinealectomized male Djungarian hamsters (Phodopus sungorus sungorus):
duration is the critical parameter. Endocrinology 113:1261–1267.

Cassone VM, Roberts MH, and Moore RY (1988) Effects of melatonin on 2-deoxy-[1-
14C]glucose uptake within rat suprachiasmatic nucleus. Am J Physiol Regul Integr
Comp Physiol 255:R332–R337.

Ceccatelli S, Lundberg JM, Zhang X, Aman K, and Hokfelt T (1994) Immunohisto-
chemical demonstration of nitric oxide synthase in the peripheral autonomic
nervous system. Brain Res 656:381–395.

Cechetto DF and Sapper CB (1988) Neurochemical organization of the hypothalamic
projection to the spinal cord. J Comp Neurol 272:579–604.

Cena V, Halperin JI, Yeandle S, and Klein DC (1991) Norepinephrine stimulates
potassium efflux from pinealocytes: evidence for involvement of biochemical
“AND” gate operated by calcium and adenosine 3�,5�-monophosphate. Endocrinol-
ogy 128:559–569.
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and Simonneaux V (2001) Hypocretin (Orexin) in the rat pineal gland: a central
transmitter with effects on noradrenaline-induced release of melatonin. Eur
J Neurosci 14:419–425.

Mikkelsen JD, Hauser F, and Olcese J (1999) Neuropeptide Y (NPY) and NPY
receptors in the rat pineal gland. Adv Exp Med Biol 460:95–107.

Mikkelsen JD, Korf HW, and Møller M (1987) Vasoactive Intestinal Peptide (VIP) in
the pineal gland of the rat, in Fundamentals and Clinics in Pineal Research
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Pévet P, Pitrosky B, Vuillez P, Jacob N, Teclemariam-Mesbah R, Kirsch R, Vivien-
Roels B, Lakhdar-Ghazal N, Canguilhem B, and Masson-Pévet M (1996) The
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Simonneaux V, Ouichou A, Craft C, and Pévet P (1994a) Neuropeptide Y effects in
the rat pineal gland, in Advances in Pineal Research (Møller M and Pévet P eds)
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Vivien-Roels B, Pévet P, Masson-Pévet M, and Canguilhem B (1992) Seasonal
variations in the daily rhythm of pineal gland and/or circulating melatonin and
5-methoxytryptophol concentrations in the European hamster, Cricetus cricetus.
Gen Comp Endocrinol 86:239–247.

Vivien-Roels B, Pitrosky B, Zitouni M, Malan A, Canguilhem B, Bonn D, and Pévet
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